A rubberlike stretchable active matrix using elastic conductors

被引:1204
|
作者
Sekitani, Tsuyoshi [1 ]
Noguchi, Yoshiaki [1 ]
Hata, Kenji [2 ]
Fukushima, Takanori [3 ,4 ]
Aida, Takuzo [3 ,4 ]
Someya, Takao [1 ,5 ]
机构
[1] Univ Tokyo, Sch Engn, Quantum Phase Elect Ctr, Bunkyo Ku, Tokyo 1138656, Japan
[2] Natl Inst Adv Ind Sci & Technol, Res Ctr Adv Carbon Mat, Tsukuba, Ibaraki 3058565, Japan
[3] Univ Tokyo, Sch Engn, Dept Chem & Biotechnol, Bunkyo Ku, Tokyo 1138656, Japan
[4] Natl Museum Emerging Sci & Innovat, Nanospace Project Exploratory Res Adv Technol Sol, Japan Sci & Technol Agcy, Koto Ku, Tokyo 1350064, Japan
[5] Univ Tokyo, Collaborat Inst Nano Quantum Informat Elect, Meguro Ku, Tokyo 1538505, Japan
关键词
D O I
10.1126/science.1160309
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
By using an ionic liquid of 1- butyl- 3- methylimidazolium bis( trifluoromethanesulfonyl) imide, we uniformly dispersed single- walled carbon nanotubes ( SWNTs) as chemically stable dopants in a vinylidene fluoride- hexafluoropropylene copolymer matrix to form a composite film. We found that the SWNT content can be increased up to 20 weight percent without reducing the mechanical flexibility or softness of the copolymer. The SWNT composite film was coated with dimethyl-siloxane- based rubber, which exhibited a conductivity of 57 siemens per centimeter and a stretchability of 134%. Further, the elastic conductor was integrated with printed organic transistors to fabricate a rubberlike active matrix with an effective area of 20 by 20 square centimeters. The active matrix sheet can be uniaxially and biaxially stretched by 70% without mechanical or electrical damage. The elastic conductor allows for the construction of electronic integrated circuits, which can be mounted anywhere, including arbitrary curved surfaces and movable parts, such as the joints of a robot's arm.
引用
收藏
页码:1468 / 1472
页数:5
相关论文
共 50 条
  • [21] Matrix-Assisted Catalytic Printing for the Fabrication of Multiscale, Flexible, Foldable, and Stretchable Metal Conductors
    Guo, Ruisheng
    Yu, You
    Xie, Zhuang
    Liu, Xuqing
    Zhou, Xuechang
    Gao, Yufan
    Liu, Zhilu
    Zhou, Feng
    Yang, Yong
    Zheng, Zijian
    ADVANCED MATERIALS, 2013, 25 (24) : 3343 - 3350
  • [22] Stretchable batteries with gradient multilayer conductors
    Gu, Minsu
    Song, Woo-Jin
    Hong, Jaehyung
    Kim, Sung Youb
    Shin, Tae Joo
    Kotov, Nicholas A.
    Park, Soojin
    Kim, Byeong-Su
    SCIENCE ADVANCES, 2019, 5 (07):
  • [23] Stretchable carbon nanotube conductors and their applications
    Sunju Hwang
    Soo-Hwan Jeong
    Korean Journal of Chemical Engineering, 2016, 33 : 2771 - 2787
  • [24] Stretchable gold conductors on elastomeric substrates
    Lacour, SP
    Wagner, S
    Huang, ZY
    Suo, Z
    APPLIED PHYSICS LETTERS, 2003, 82 (15) : 2404 - 2406
  • [25] Stretchable Ionic Conductors for Soft Electronics
    Niu, Wenwen
    Liu, Xiaokong
    MACROMOLECULAR RAPID COMMUNICATIONS, 2022, 43 (23)
  • [26] Elastic and thermoelastic properties of rubberlike materials - A statistical theory
    Guth, E
    James, HM
    INDUSTRIAL AND ENGINEERING CHEMISTRY, 1941, 33 : 624 - +
  • [27] Stretchable conductors for stretchable field-effect transistors and functional circuits
    Wang, Liangjie
    Yi, Zhengran
    Zhao, Yan
    Liu, Yunqi
    Wang, Shuai
    CHEMICAL SOCIETY REVIEWS, 2023, 52 (02) : 795 - 835
  • [28] Three-Dimensional Highly Stretchable Conductors from Elastic Fiber Mat with Conductive Polymer Coating
    Duan, Shasha
    Wang, Zhihui
    Zhang, Ling
    Liu, Jin
    Li, Chunzhong
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (36) : 30772 - 30778
  • [29] Stretchable conductors for stretchable field-effect transistors and functional circuits
    Wang, Liangjie
    Yi, Zhengran
    Zhao, Yan
    Liu, Yunqi
    Wang, Shuai
    Chemical Society Reviews, 2022, 52 (02) : 795 - 835
  • [30] MOLECULAR PROCESSES DURING DEFORMATION OF RUBBERLIKE ELASTIC BODIES
    MEYER, KH
    VANDERWYK, AJA
    JOURNAL OF POLYMER RESEARCH, 1946, 1 (01): : 49 - 57