On existence of log minimal models and weak Zariski decompositions

被引:19
|
作者
Birkar, Caucher [1 ]
机构
[1] Univ Cambridge, DPMMS, Ctr Math Sci, Cambridge CB3 0WB, England
关键词
TERMINATION; SHOKUROV; FLIPS;
D O I
10.1007/s00208-011-0756-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We first introduce a weak type of Zariski decomposition in higher dimensions: an -Cartier divisor has a weak Zariski decomposition if birationally and in a numerical sense it can be written as the sum of a nef and an effective -Cartier divisor. We then prove that there is a very basic relation between Zariski decompositions and log minimal models which has long been expected: we prove that assuming the log minimal model program in dimension d - 1, a lc pair (X/Z, B) of dimension d has a log minimal model (in our sense) if and only if K (X) + B has a weak Zariski decomposition/Z.
引用
收藏
页码:787 / 799
页数:13
相关论文
共 50 条
  • [31] ON INTEGRAL ZARISKI DECOMPOSITIONS OF PSEUDOEFFECTIVE DIVISORS ON ALGEBRAIC SURFACES
    Harbourne, B.
    Pokora, P.
    Tutaj-Gasinska, H.
    ELECTRONIC RESEARCH ANNOUNCEMENTS IN MATHEMATICAL SCIENCES, 2015, 22 : 103 - 108
  • [32] ORTHOGONALITY OF DIVISORIAL ZARISKI DECOMPOSITIONS FOR CLASSES WITH VOLUME ZERO
    Tosatti, Valentino
    TOHOKU MATHEMATICAL JOURNAL, 2019, 71 (01) : 1 - 8
  • [33] THE ZARISKI DECOMPOSITION OF LOG-CANONICAL DIVISORS
    KAWAMATA, Y
    PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS, 1987, 46 : 425 - 433
  • [34] A weak version of the Lipman–Zariski conjecture
    Clemens Jörder
    Mathematische Zeitschrift, 2014, 278 : 893 - 899
  • [35] MINIMAL MODELS AND ABUNDANCE FOR POSITIVE CHARACTERISTIC LOG SURFACES
    Tanaka, Hiromu
    NAGOYA MATHEMATICAL JOURNAL, 2014, 216 : 1 - 70
  • [36] EXISTENCE OF WEAK SOLUTIONS TO KINETIC FLOCKING MODELS
    Karper, Trygve K.
    Mellet, Antoine
    Trivisa, Konstantina
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2013, 45 (01) : 215 - 243
  • [37] An application of anisotropic regularization to the existence of weak Pareto minimal points
    Sznajder, R
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 279 (02) : 617 - 624
  • [38] ON THE NUMBER AND BOUNDEDNESS OF LOG MINIMAL MODELS OF GENERAL TYPE
    Martinelli, Diletta
    Schreieder, Stefan
    Tasin, Luca
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2020, 53 (05): : 1183 - 1207
  • [39] Non-Archimedean Green's functions and Zariski decompositions
    Boucksom, Sebastien
    Jonsson, Mattias
    COMPTES RENDUS MATHEMATIQUE, 2024, 362 : 5 - 42
  • [40] EXISTENCE OF MINIMAL MODELS FOR GENERAL TYPE VARIETIES
    Druel, Stephane
    ASTERISQUE, 2009, (326) : 1 - 38