Ultrafast optics with a mode-locked erbium fiber laser in the undergraduate laboratory

被引:2
|
作者
Upcraft, Daniel [1 ,3 ]
Schaffer, Andrew [1 ,4 ]
Fredrick, Connor [1 ,5 ]
Mohr, Daniel [1 ,6 ]
Parks, Nathan [1 ]
Thomas, Andrew [1 ]
Sievert, Ella [1 ]
Riedemann, Austin [1 ]
Hoyt, Chad W. [1 ]
Jones, R. Jason [2 ]
机构
[1] Bethel Univ, Dept Phys & Engn, St Paul, MN 55112 USA
[2] Univ Arizona, Wyant Coll Opt Sci, Tucson, AZ 85721 USA
[3] Univ Minnesota, Minneapolis, MN USA
[4] Honeywell, Golden Valley, MN USA
[5] Univ Colorado, Boulder, CO 80309 USA
[6] Seagate, Bloomington, MN USA
基金
美国国家科学基金会;
关键词
ULTRASHORT PULSES; PHASE; AUTOCORRELATION; COMPRESSION; AMPLITUDE;
D O I
10.1119/10.0005890
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
We describe an ultrafast optics laboratory comprising a mode-locked erbium fiber laser, autocorrelation measurements, and a free-space parallel grating dispersion compensation apparatus. The gain spectrum of Er fiber provides a broad bandwidth capable of supporting sub-100 fs pulses centered near a wavelength of 1550nm. The fiber laser design used here produces a train of pulses at a repetition rate of 55MHz with pulse duration as short as 108 fs. The pulse duration is measured with a homebuilt autocorrelator using a simple Michelson interferometer that takes advantage of the two-photon nonlinear response of a common silicon photodiode. To compensate for temporal stretching of the short pulse due to group velocity dispersion in the fiber, an apparatus based on a pair of parallel gratings is used for pulse compression. A detailed part that lists in the supplementary material includes previously owned and common parts used by the telecommunications industry, which helps decrease costs of the laboratory. This provides a cost-effective way to introduce the principles of ultrafast optics to undergraduate laboratories. (C) 2021
引用
收藏
页码:1152 / 1160
页数:9
相关论文
共 50 条
  • [31] Tellurium-nanorod-based saturable absorber for an ultrafast passive mode-locked erbium-doped fiber laser
    Hassan, Hiba
    Munshid, Mohammed A.
    Al-Janabi, Abdulhadi
    APPLIED OPTICS, 2020, 59 (04) : 1230 - 1236
  • [32] Ultrafast mode-locked fiber laser with zirconium disulfide on D-shaped fiber
    Yang, Huiran
    Li, Wenlei
    Wang, Guomei
    Sun, Yuhang
    INFRARED PHYSICS & TECHNOLOGY, 2020, 104
  • [33] All-Fiber Bidirectional Mode-Locked Ultrafast Fiber Laser at 2 μm
    Li, Yiming
    Yin, Ke
    Zhang, Xin
    Zheng, Xin
    Cheng, Xiangai
    Jiang, Tian
    IEEE PHOTONICS JOURNAL, 2019, 11 (06):
  • [34] Ultrafast Raman laser mode-locked by nanotubes
    Castellani, C. E. S.
    Kelleher, E. J. R.
    Travers, J. C.
    Popa, D.
    Hasan, T.
    Sun, Z.
    Flahaut, E.
    Ferrari, A. C.
    Popov, S. V.
    Taylor, J. R.
    OPTICS LETTERS, 2011, 36 (20) : 3996 - 3998
  • [35] MODE-LOCKED ERBIUM FIBER LASER WITH WAVELENGTH SELECTION BY MEANS OF FIBER BRAGG GRATING REFLECTOR
    DAVEY, RP
    FLEMING, RPE
    SMITH, K
    KASHYAP, R
    ARMITAGE, JR
    ELECTRONICS LETTERS, 1991, 27 (22) : 2087 - 2088
  • [36] Vector dynamics of ultrafast cylindrical vector beams in a mode-locked fiber laser
    王家柱
    金亮
    谢尚之
    王仁严
    张贺
    徐英添
    赵鑫
    李岩
    马晓辉
    Chinese Optics Letters, 2021, 19 (11) : 112 - 117
  • [37] MODE-LOCKED FIBER LASER GYROSCOPE
    JEON, MY
    JEONG, HJ
    KIM, BY
    OPTICS LETTERS, 1993, 18 (04) : 320 - 322
  • [38] Ultrafast stretched-pulse fiber laser mode-locked by carbon nanotubes
    Zhipei Sun
    Tawfique Hasan
    Fengqiu Wang
    Aleksey G. Rozhin
    Ian H. White
    Andrea C. Ferrari
    Nano Research, 2010, 3 : 404 - 411
  • [39] Ultrafast stretched-pulse fiber laser mode-locked by carbon nanotubes
    Sun, Zhipei
    Hasan, Tawfique
    Wang, Fengqiu
    Rozhin, Aleksey G.
    White, Ian H.
    Ferrari, Andrea C.
    NANO RESEARCH, 2010, 3 (06) : 404 - 411
  • [40] The Graghene Mode-locked Fiber Laser
    Guo Shili
    Yang Aiying
    Sun Yvnan
    PASSIVE COMPONENTS AND FIBER-BASED DEVICES VIII, 2011, 8307