Research progress on discretization of fractional Fourier transform

被引:31
|
作者
Tao, Ran [1 ]
Zhang, Feng [1 ]
Wang, Yue [1 ]
机构
[1] Beijing Inst Technol, Dept Elect Engn, Beijing 100081, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
fractional Fourier transform; sampling in the fractional Fourier domain; discrete-time fractional Fourier transform; fractional Fourier series; discrete fractional Fourier transform;
D O I
10.1007/s11432-008-0069-2
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
As the fractional Fourier transform has attracted a considerable amount of attention in the area of optics and signal processing, the discretization of the fractional Fourier transform becomes vital for the application of the fractional Fourier transform. Since the discretization of the fractional Fourier transform cannot be obtained by directly sampling in time domain and the fractional Fourier domain, the discretization of the fractional Fourier transform has been investigated recently. A summary of discretizations of the fractional Fourier transform developed in the last nearly two decades is presented in this paper. The discretizations include sampling in the fractional Fourier domain, discrete-time fractional Fourier transform, fractional Fourier series, discrete fractional Fourier transform (including 3 main types: linear combination-type; sampling-type; and eigen decomposition-type), and other discrete fractional signal transform. It is hoped to offer a doorstep for the readers who are interested in the fractional Fourier transform.
引用
收藏
页码:859 / 880
页数:22
相关论文
共 50 条
  • [41] FRACTIONAL ORDER FOURIER-TRANSFORM AND FOURIER OPTICS
    PELLATFINET, P
    BONNET, G
    OPTICS COMMUNICATIONS, 1994, 111 (1-2) : 141 - 154
  • [42] Characterizations of the gyrator transform via the fractional Fourier transform
    Kagawa, Toshinao
    Suzuki, Toshio
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2023, 34 (05) : 399 - 413
  • [43] Multidimensional fractional Fourier transform and generalized fractional convolution
    Kamalakkannan, R.
    Roopkumar, R.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2020, 31 (02) : 152 - 165
  • [44] Fractional Integrals of Fractional Fourier Transform for Integrable Boehmians
    Singh, Abhishek
    Banerji, P. K.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2018, 88 (01) : 49 - 53
  • [45] Fractional Fourier transform in the framework of fractional calculus operators
    Kilbas, A. A.
    Luchko, Yu. F.
    Martinez, H.
    Trujillo, J. J.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2010, 21 (10) : 779 - 795
  • [46] A unified framework for the fractional Fourier transform
    Cariolaro, G
    Erseghe, T
    Kraniauskas, P
    Laurenti, N
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1998, 46 (12) : 3206 - 3219
  • [47] A novel discrete fractional Fourier transform
    Tao, R
    Ping, XJ
    Shen, Y
    Zhao, XH
    2001 CIE INTERNATIONAL CONFERENCE ON RADAR PROCEEDINGS, 2001, : 1027 - 1030
  • [48] THE FRACTIONAL QUATERNION FOURIER NUMBER TRANSFORM
    da Silva, Luiz C.
    de Oliveira Neto, Jose R.
    Lima, Juliano B.
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 5610 - 5614
  • [49] Random Discrete Fractional Fourier Transform
    Pei, Soo-Chang
    Hsue, Wen-Liang
    IEEE SIGNAL PROCESSING LETTERS, 2009, 16 (12) : 1015 - 1018
  • [50] THE FINITE FIELD FRACTIONAL FOURIER TRANSFORM
    Lima, Juliano B.
    Campello de Souza, Ricardo M.
    2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, : 3670 - 3673