The global optimization design for electron emission system using genetic algorithms

被引:0
|
作者
Gu, CX [1 ]
Wu, MQ [1 ]
Lin, G [1 ]
Shan, LY [1 ]
机构
[1] Fudan Univ, Dept Mat Sci, Shanghai 200433, Peoples R China
来源
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT | 2004年 / 519卷 / 1-2期
关键词
genetic algorithms; optimization design; electron optical system;
D O I
10.1016/j.nima.2003.11.126
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The general optimization design method, such as Simplex method and Powell method, etc., can determine the final optimum structure and electric parameters of an electron optical system from given electron optical properties, but it may land in a local minimum of the optimum search process. The Genetic Algorithms (GAs) is a novel direct search optimization method based on principles of natural selection and "survival of the fittest" from natural evolution. Through the "reproduction", "crossover" and "mutation" iterative process, GAs can search the global optimum result. In this paper, we applied the GAs to optimize an electron emission system, a "triode" structure used in a projection display with high resolution and brightness. The optimal structure and corresponding electrical parameters with a criterion of minimum objective function value, crossover radius, have been searched and presented in this paper. The GAs, as a direct search method and an adaptive search technique, has significant advantage in the optimization design of electron optical systems. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:90 / 95
页数:6
相关论文
共 50 条
  • [31] Design Optimization of Soft Pneumatic Actuators Using Genetic Algorithms
    Runge, Gundula
    Peters, Jan
    Raatz, Annika
    2017 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (IEEE ROBIO 2017), 2017, : 393 - 400
  • [32] Library design using genetic algorithms for catalyst discovery and optimization
    Clerc, F
    Lengliz, M
    Farrusseng, D
    Mirodatos, C
    Pereira, SRM
    Rakotomalala, R
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2005, 76 (06):
  • [33] Optimization design of multibody systems by using genetic algorithms.
    Datoussaid, S
    Hadjit, R
    Verlinden, O
    Conti, C
    VEHICLE SYSTEM DYNAMICS, 1998, 29 : 704 - 710
  • [34] Optical thin trim optimization design using Genetic Algorithms
    Li, DG
    Watson, AC
    1997 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT PROCESSING SYSTEMS, VOLS 1 & 2, 1997, : 132 - 136
  • [35] Design optimization of series electrical machines using genetic algorithms
    Wu, Derong
    Li, Jingchuan
    Li, Qingfu
    Sun, Ping
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 1999, 33 (02): : 14 - 18
  • [36] DESIGN AND OPTIMIZATION OF VALVELESS MICROPUMPS BY USING GENETIC ALGORITHMS APPROACH
    Shukur, Aida F. M.
    Chin, Neoh S.
    Norhayati, S.
    Taib, Bibi N.
    JOURNAL OF ENGINEERING SCIENCE AND TECHNOLOGY, 2015, 10 (10): : 1293 - 1309
  • [37] Practical design optimization of truss structures using the genetic algorithms
    Dominguez, A.
    Stiharu, I.
    Sedaghati, R.
    RESEARCH IN ENGINEERING DESIGN, 2006, 17 (02) : 73 - 84
  • [38] Using genetic algorithms in design optimization of the flux switching motor
    Chai, KS
    Pollock, C
    INTERNATIONAL CONFERENCE ON POWER ELECTRONICS, MACHINES AND DRIVES, 2002, (487): : 540 - 545
  • [39] Global numerical optimization using multi-agent genetic algorithms
    Zhong, WC
    Liu, J
    Xue, MZ
    Jiao, LC
    ICCIMA 2003: FIFTH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND MULTIMEDIA APPLICATIONS, PROCEEDINGS, 2003, : 165 - 170
  • [40] Global optimization of atomic cluster structures using parallel genetic algorithms
    Ona, Ofelia
    Bazterra, Victor E.
    Caputo, Maria C.
    Ferraro, Maria B.
    Facelli, Julio C.
    COMBINATORIAL METHODS AND INFORMATICS IN MATERIALS SCIENCE, 2006, 894 : 277 - +