The global optimization design for electron emission system using genetic algorithms

被引:0
|
作者
Gu, CX [1 ]
Wu, MQ [1 ]
Lin, G [1 ]
Shan, LY [1 ]
机构
[1] Fudan Univ, Dept Mat Sci, Shanghai 200433, Peoples R China
来源
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT | 2004年 / 519卷 / 1-2期
关键词
genetic algorithms; optimization design; electron optical system;
D O I
10.1016/j.nima.2003.11.126
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The general optimization design method, such as Simplex method and Powell method, etc., can determine the final optimum structure and electric parameters of an electron optical system from given electron optical properties, but it may land in a local minimum of the optimum search process. The Genetic Algorithms (GAs) is a novel direct search optimization method based on principles of natural selection and "survival of the fittest" from natural evolution. Through the "reproduction", "crossover" and "mutation" iterative process, GAs can search the global optimum result. In this paper, we applied the GAs to optimize an electron emission system, a "triode" structure used in a projection display with high resolution and brightness. The optimal structure and corresponding electrical parameters with a criterion of minimum objective function value, crossover radius, have been searched and presented in this paper. The GAs, as a direct search method and an adaptive search technique, has significant advantage in the optimization design of electron optical systems. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:90 / 95
页数:6
相关论文
共 50 条
  • [1] The application of genetic algorithms to the optimization design of electron optical system
    Gu, CX
    Wu, MQ
    Lin, G
    Shan, LY
    CHARGED PARTICLE DETECTION, DIAGNOSTICS, AND IMAGING, 2001, 4510 : 127 - 137
  • [2] System design optimization by genetic algorithms
    Marseguerra, M
    Zio, E
    ANNUAL RELIABILITY AND MAINTAINABILITY SYMPOSIUM - 2000 PROCEEDINGS, 2000, : 222 - 227
  • [3] System design optimization by genetic algorithms
    Marseguerra, M.
    Zio, E.
    Proceedings of the Annual Reliability and Maintainability Symposium, 2000, : 222 - 227
  • [4] Global optimization of grillages using genetic algorithms
    Belevicius, R.
    Sesok, D.
    MECHANIKA, 2008, (06): : 38 - 44
  • [5] Instrument design and optimization using genetic algorithms
    Holzel, Robert
    Bentley, Phillip M.
    Fouquet, Peter
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2006, 77 (10):
  • [6] Global optimization approach using genetic algorithms with zooming
    Sellami, Hichem
    Karray, Fakhri
    Systems Analysis Modelling Simulation, 2000, 37 (03): : 397 - 406
  • [7] GLOBAL GEOMETRY OPTIMIZATION OF CLUSTERS USING GENETIC ALGORITHMS
    HARTKE, B
    JOURNAL OF PHYSICAL CHEMISTRY, 1993, 97 (39): : 9973 - 9976
  • [8] Hybrid methods using genetic algorithms for global optimization
    Renders, JM
    Flasse, SP
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 1996, 26 (02): : 243 - 258
  • [9] The design of the global navigation satellite system surveying networks using genetic algorithms
    Saleh, HA
    Chelouah, R
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2004, 17 (01) : 111 - 122
  • [10] Genetic global optimization algorithms
    Ermakov, Sergej M.
    Semenchikov, Dmitriy N.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (04) : 1503 - 1512