Triboelectric Nanogenerator: A Foundation of the Energy for the New Era

被引:1575
|
作者
Wu, Changsheng [1 ]
Wang, Aurelia C. [1 ]
Ding, Wenbo [1 ]
Guo, Hengyu [1 ]
Wang, Zhong Lin [1 ,2 ]
机构
[1] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
[2] Chinese Acad Sci, Beijing Inst Nanoenergy & Nanosyst, Beijing 100083, Peoples R China
关键词
blue energy; energy harvesting; self-powered; the energy for the new era; triboelectric nanogenerators; WATER-WAVE ENERGY; KEYSTROKE DYNAMICS; BIOMECHANICAL ENERGY; SURFACE-CHARGE; SYSTEM DRIVEN; POWER; CONTACT; ELECTRODE; PERFORMANCE; VIBRATION;
D O I
10.1002/aenm.201802906
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
As the world is marching into the era of the internet of things (IoTs) and artificial intelligence, the most vital development for hardware is a multifunctional array of sensing systems, which forms the foundation of the fourth industrial revolution toward an intelligent world. Given the need for mobility of these multitudes of sensors, the success of the IoTs calls for distributed energy sources, which can be provided by solar, thermal, wind, and mechanical triggering/vibrations. The triboelectric nanogenerator (TENG) for mechanical energy harvesting developed by Z.L. Wang's group is one of the best choices for this energy for the new era, since triboelectrification is a universal and ubiquitous effect with an abundant choice of materials. The development of self-powered active sensors enabled by TENGs is revolutionary compared to externally powered passive sensors, similar to the advance from wired to wireless communication. In this paper, the fundamental theory, experiments, and applications of TENGs are reviewed as a foundation of the energy for the new era with four major application fields: micro/nano power sources, self-powered sensors, large-scale blue energy, and direct high-voltage power sources. A roadmap is proposed for the research and commercialization of TENG in the next 10 years.
引用
收藏
页数:25
相关论文
共 50 条
  • [41] Triboelectric Nanogenerator for Droplet Energy Harvesting Based on Hydrophobic Composites
    Zheng, Yang
    Li, Jingjing
    Xu, Tiantian
    Cui, Hongzhi
    Li, Xiaoyi
    MATERIALS, 2023, 16 (15)
  • [42] Vertically stacked thin triboelectric nanogenerator for wind energy harvesting
    Seol, Myeong-Lok
    Woo, Jong-Ho
    Jeon, Seung-Bae
    Kim, Daewon
    Park, Sang-Jae
    Hur, Jae
    Choi, Yang-Kyu
    NANO ENERGY, 2015, 14 : 201 - 208
  • [43] Structural Optimization of Triboelectric Nanogenerator for Harvesting Water Wave Energy
    Jiang, Tao
    Zhang, Li Min
    Chen, Xiangyu
    Han, Chang Bao
    Tang, Wei
    Zhang, Chi
    Xu, Liang
    Wang, Zhong Lin
    ACS NANO, 2015, 9 (12) : 12562 - 12572
  • [44] Gravity triboelectric nanogenerator for the steady harvesting of natural wind energy
    Wang, Yuqi
    Yu, Xin
    Yin, Mengfei
    Wang, Jianlong
    Gao, Qi
    Yu, Yang
    Cheng, Tinghai
    Wang, Zhong Lin
    Nano Energy, 2021, 82
  • [45] Design guidelines of triboelectric nanogenerator for water wave energy harvesters
    Ahmed, Abdelsalam
    Hassan, Islam
    Jiang, Tao
    Youssef, Khalid
    Liu, Lian
    Hedaya, Mohammad
    Abu Yazid, Taher
    Zu, Jean
    Wang, Zhong Lin
    NANOTECHNOLOGY, 2017, 28 (18)
  • [46] Magnetic energy harvesting of transmission lines by the swinging triboelectric nanogenerator
    Yuan, Zhihao
    Wei, Xuelian
    Jin, Xu
    Sun, Yanggui
    Wu, Zhiyi
    Wang, Zhong Lin
    MATERIALS TODAY ENERGY, 2021, 22 (22)
  • [47] Plant-based triboelectric nanogenerator for biomechanical energy harvesting
    Babu, Anjaly
    Rakesh, D.
    Supraja, P.
    Mishra, Siju
    Kumar, K. Uday
    Kumar, R. Rakesh
    Haranath, D.
    Mamidala, Estari
    Nagapuri, Raju
    RESULTS IN SURFACES AND INTERFACES, 2022, 8
  • [48] Liquid-Solid Triboelectric Nanogenerator for Bubble Energy Harvesting
    Li, Changzheng
    Zhang, Hongrui
    Wang, Yaofeng
    Liu, Xuyang
    Ali, Asad
    Tian, Zhi Qun
    ADVANCED MATERIALS TECHNOLOGIES, 2023, 8 (11)
  • [49] Arc-Shaped Triboelectric Nanogenerator for Wind Energy Harvesting
    Wang, Nan
    Huang, Hui
    Zhu, Wenxuan
    Zhao, Xue
    Yang, Ya
    ENERGY TECHNOLOGY, 2022, 10 (05)
  • [50] Energy Optimization of a Mirror-Symmetric Spherical Triboelectric Nanogenerator
    Gravesen, Jens
    Willatzen, Morten
    Shao, Jiajia
    Wang, Zhong Lin
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (18)