Water Surface Stability Prediction of Amphibious Bio-Inspired Undulatory Fin Robot

被引:10
|
作者
Chen, Zhenhan [1 ]
Hu, Qiao [1 ]
Chen, Yingliang [2 ]
Wei, Chang [1 ]
Yin, Shenglin [1 ]
机构
[1] Xi An Jiao Tong Univ, Shaanxi Key Lab Intelligent Robots, 28 Xianning West Rd, Xian 710049, Shaanxi, Peoples R China
[2] Kunming Precis Machinery Res Inst, 1122 Datang Rd, Kunming 650032, Yunnan, Peoples R China
关键词
DESIGN;
D O I
10.1109/IROS51168.2021.9636182
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
To solve the interference problems of wind and wave action and load movement when switching under water surface conditions in the marine environment, a study on the water surface stability prediction of the bio-inspired undulatory fin robot is carried out. Based on the fin motion equation and fluid drag theory, a water surface stability calculation model of the robot is established. The study compares the effects of different loads and heel angles on the stability of the robot's water surface under different calculation methods and verifies the validity of the model through computational fluid dynamics methods. The simulation results show that the water surface stability of the robot exhibits sinusoidal-like changes over time, which is equal to the undulatory fin period. The stability decreases with the increase of the drainage volume. When the drainage volume is constant, the stability first increases and then decreases with the increase in heel angle. The theoretical calculation results are consistent with the numerical results, which verify the effectiveness of the water surface stability prediction model proposed in this paper. It can provide a theoretical basis for the optimization design of water surface stability of the undulatory fin robot.
引用
收藏
页码:7365 / 7371
页数:7
相关论文
共 50 条
  • [31] Bio-Inspired Transparent Soft Jellyfish Robot
    Wang, Yuzhe
    Zhang, Pengpeng
    Huang, Hui
    Zhu, Jian
    SOFT ROBOTICS, 2023, 10 (03) : 590 - 600
  • [32] Simulation of a Robot in Bio-Inspired Hexapod Tenebrio
    Pablo Rodriguez-Calderon, Juan
    Fernanda Ramos-Parra, Maria
    Vladimir Pena-Giraldo, Mauricio
    REVISTA DIGITAL LAMPSAKOS, 2015, (14): : 33 - 39
  • [33] Design of a Bio-Inspired Autonomous Underwater Robot
    Daniele Costa
    Giacomo Palmieri
    Matteo-Claudio Palpacelli
    Luca Panebianco
    David Scaradozzi
    Journal of Intelligent & Robotic Systems, 2018, 91 : 181 - 192
  • [34] A bio-inspired Living Lab as a robot exoskeleton
    Sevrin, Loic
    Noury, Norbert
    Abouchi, Nacer
    Jumel, Fabrice
    Massot, Bertrand
    Saraydaryan, Jacques
    2015 17TH INTERNATIONAL CONFERENCE ON E-HEALTH NETWORKING, APPLICATION & SERVICES (HEALTHCOM), 2015, : 552 - 556
  • [35] ENVIRONMENTALLY FRIENDLY BIO-INSPIRED TURTLE ROBOT
    Domazetovska, Simona
    Ivanoski, Kristijan
    Josifovska, Stefani
    Slavkovski, Viktor
    Jovanova, Jovana
    PROCEEDINGS OF THE ASME 2020 CONFERENCE ON SMART MATERIALS, ADAPTIVE STRUCTURES AND INTELLIGENT SYSTEMS (SMASIS2020), 2020,
  • [36] Leg prototype of a bio-inspired quadruped robot
    Guo, W. (for0207@126.com), 1600, Chinese Academy of Sciences (36):
  • [37] Design of a Stepping Hexapod Bio-Inspired Robot
    Dologa, Razvan Stefan
    Valean, Honoriu
    Ianosi, Alexandru
    2024 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION, QUALITY AND TESTING, ROBOTICS, AQTR, 2024, : 143 - 148
  • [38] Bio-inspired locomotion for a modular snake robot
    Zhang, Shubo
    Guo, Yi
    BIO-INSPIRED/BIOMIMETIC SENSOR TECHNOLOGIES AND APPLICATIONS, 2009, 7321
  • [39] Bio-inspired Prehensile Continuum Robot Systems
    Walker, I. D.
    JOURNAL OF MORPHOLOGY, 2019, 280 : S46 - S46
  • [40] Spatial representation and navigation in a bio-inspired robot
    Sheynikhovich, D
    Chavarriaga, R
    Strösslin, T
    Gerstner, W
    BIOMIMETIC NEURAL LEARNING FOR INTELLIGENT ROBOTS: INTELLIGENT SYSTEMS, COGNITIVE ROBOTICS, AND NEUROSCIENCE, 2005, 3575 : 245 - 264