Effects of Applied Magnetic Field on the Optical Properties and Binding Energies Spherical GaAs Quantum Dot with Donor Impurity

被引:12
|
作者
Edet, Collins Okon [1 ,2 ,3 ]
Al Bahadir, Emre [4 ]
Ungan, Fatih [4 ]
Ali, Norshamsuri [2 ]
Rusli, Nursalasawati [5 ]
Aljunid, Syed Alwee [2 ]
Endut, Rosdisham [2 ]
Asjad, Muhammad [6 ]
机构
[1] Univ Malaysia Perlis, Fac Appl & Human Sci, Arau 02600, Malaysia
[2] Univ Malaysia Perlis, Fac Elect Engn Technol, Arau 02600, Malaysia
[3] Cross River Univ Technol, Dept Phys, Calabar 540252, Nigeria
[4] Cumhuriyet Univ, Dept Phys, Fac Sci, TR-58140 Sivas, Turkey
[5] Univ Malaysia Perlis, Inst Engn Math, Arau 02600, Malaysia
[6] Khalifa Univ, Dept Math, Abu Dhabi 127788, U Arab Emirates
关键词
screened modified Kratzer potential (SMKP); refractive index; absorption coefficient; optical transitions; diagonalization method; DIATOMIC-MOLECULES; REFRACTIVE-INDEX; WAVE MECHANICS; ABSORPTION; MODEL; RING;
D O I
10.3390/nano12162741
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The screened modified Kratzer potential (SMKP) model is utilized to scrutinize the impacts of an applied magnetic field (MF) on the binding energies and linear and nonlinear optical properties spherical GaAs quantum dot with donor impurity (DI). To accomplish this goal, we have used the diagonalization method to numerically solve the Schrodinger equation under the effective mass approximation for obtaining the electron energy levels and related electronic wave functions. The expressions used for evaluating linear, third-order nonlinear, and total optical absorption coefficients and relative refractive index changes were previously derived within the compact density matrix method. It has been shown here that the MF and DI impacts the characteristics of the absorption coefficients and the refractive index changes. This study's results will find application in optoelectronics and related areas.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] The effect of magnetic field and donor impurity on electron spectrum in spherical core-shell quantum dot
    Holovatsky, V. A.
    Voitsekhivska, O. M.
    Yakhnevych, M. Ya
    SUPERLATTICES AND MICROSTRUCTURES, 2018, 116 : 9 - 16
  • [42] Donor binding energies and spin-orbit coupling in a spherical quantum dot
    Bella, RSD
    Navaneethakrishnan, K
    SOLID STATE COMMUNICATIONS, 2004, 130 (11) : 773 - 776
  • [43] Binding energies of D0 impurity in CdTe/ZnTe spherical quantum dot
    Kostic, R.
    Stojanovic, D.
    PHYSICA SCRIPTA, 2014, T162
  • [44] DONOR IMPURITY IN NANOTUBE WITH TWO GaAs/GaAlAs QUANTUM WELLS: MAGNETIC FIELD EFFECTS
    Gonzalez, J. D.
    Escorcia, R.
    Sierra-Ortega, J.
    XIX LATIN AMERICAN SYMPOSIUM ON SOLID STATE PHYSICS (SLAFES), 2009, 167
  • [45] The non-resonant intense laser field effects on the binding energies and the nonlinear optical properties of a donor impurity in Rosen–Morse quantum well
    A Salman Durmuslar
    A Turkoglu
    M E Mora-Ramos
    F Ungan
    Indian Journal of Physics, 2022, 96 : 3485 - 3492
  • [46] Study of shallow donor level binding energies confined in a GaAs-Ga1-xAlxAs spherical quantum dot
    Kassim, H. A.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2007, 19 (03)
  • [47] Binding energy of donor states in a GaAs quantum-dot: Effect of electric and magnetic field
    Terzis, AF
    Baskoutasz, S
    SECOND CONFERENCE ON MICROELECTRONICS, MICROSYSTEMS AND NANOTECHNOLOGY, 2005, 10 : 77 - 80
  • [48] Optical properties of hydrogenic impurity in an inhomogeneous infinite spherical quantum dot
    Jafari, A. R.
    PHYSICA B-CONDENSED MATTER, 2015, 456 : 72 - 77
  • [49] Optical properties of a spherical quantum dot with two ions of hydrogenic impurity
    Boichuk, V. I.
    Bilynskyi, I. V.
    Leshko, R. Ya
    Turyanska, L. M.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2013, 54 : 281 - 287
  • [50] Effects of hydrostatic pressure on the nonlinear optical properties of a donor impurity in a GaAs quantum ring
    Restrepo, R. L.
    Barseghyan, M. G.
    Mora-Ramos, M. E.
    Duque, C. A.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2013, 51 : 48 - 54