Orthogonal decompositions and canonical embeddings of multilinear alternating forms

被引:6
|
作者
Hora, J
机构
[1] Nučice 252 16
来源
LINEAR & MULTILINEAR ALGEBRA | 2004年 / 52卷 / 02期
关键词
k-linear alternating form; orthogonal decomposition; efficiency; complexity;
D O I
10.1080/03081080310001606517
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given k-linear forms f(i) : V-i(k) ---> F, 1 less than or equal to i less than or equal to m, define a k-linear form f = f(1) circle plus ... circle plus f(m) : (V-1 circle plus ... circle plus V-m)(k) --> F by f(u(1) ,..., u(k)) = Sigma(i)(i)(f)(P-i(u(1)),..., P-i(u(k))), where P-i : V-1 circle plus ... circle plus V-m --> V-i are projections. If a k-linear form f : V-k --> F can be expressed as above call the system of subspaces V-1 ,..., V-m an orthogonal decomposition (with respect to f). We show that for k greater than or equal to 3 such a decomposition is unique if in is maximal possible. Furthermore we prove that a nondegenerate alternating form f : V-k --> F can be always extended to h = h(1) circle plus ... circle plus h(c), where h(i) : (V-i)(k) --> F are nonzero alternating, and dim V-i = k, l less than or equal to i less than or equal to c.
引用
收藏
页码:121 / 132
页数:12
相关论文
共 50 条
  • [31] Graph ear decompositions and graph embeddings
    Chen, J
    Kanchi, SP
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 1999, 12 (02) : 229 - 242
  • [32] MODIFICATION OF METHOD OF CANONICAL DECOMPOSITIONS
    GORSKAYA, NA
    ENGINEERING CYBERNETICS, 1976, 14 (04): : 146 - 150
  • [33] Turaev genus and alternating decompositions
    Armond, Cody W.
    Lowrance, Adam M.
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2017, 17 (02): : 793 - 830
  • [34] Canonical Embeddings of Pairs of Arcs
    Bonk, Mario
    Eremenko, Alexandre
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2021, 21 (04) : 825 - 830
  • [35] Canonical Embeddings of Pairs of Arcs
    Mario Bonk
    Alexandre Eremenko
    Computational Methods and Function Theory, 2021, 21 : 825 - 830
  • [36] Multilinear forms which are products of linear forms
    Pappas, Alexandros
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2014, 5 (02): : 123 - 129
  • [37] ON ORTHOGONAL SYMMETRIC CHAIN DECOMPOSITIONS
    Daeubel, K.
    Jaeger, S.
    Muetze, T.
    Scheucher, M.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2019, 88 (03): : 611 - 618
  • [38] Orthogonal Decompositions of Complete Digraphs
    Sven Hartmann
    Graphs and Combinatorics, 2002, 18 : 285 - 302
  • [39] ORTHOGONAL TREE DECOMPOSITIONS OF GRAPHS
    Dujmovic, Vida
    Joret, Gwenael
    Morin, Pat
    Norin, Sergey
    Wood, David R.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2018, 32 (02) : 839 - 863
  • [40] SYSTOLIC NETWORKS FOR ORTHOGONAL DECOMPOSITIONS
    HELLER, DE
    IPSEN, ICF
    SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1983, 4 (02): : 261 - 269