We generalize the basic L-2 inequality for barred derivatives that holds on bounded pseudoconvex domains. The analogue in L-p-Sobolev norms is established for smooth, bounded pseudoconvex domains of finite type with comparable Levi eigenvalues. A weighted L-2 version and L-p estimates with loss are obtained on any smooth bounded weakly q-convex domain, where the weights are fractional powers of the distance to the boundary. (C) 2020 Elsevier Inc. All rights reserved.
机构:
Univ Nacl Sur UNS, Dept Matemat, Bahia Blanca, Buenos Aires, Argentina
Univ Nacl Sur UNS, CONICET, INMABB, Bahia Blanca, Buenos Aires, ArgentinaUniv Nacl Sur UNS, Dept Matemat, Bahia Blanca, Buenos Aires, Argentina
Ombrosi, Sheldy
Rivera-Rios, Israel P.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nacl Sur UNS, Dept Matemat, Bahia Blanca, Buenos Aires, Argentina
Univ Nacl Sur UNS, CONICET, INMABB, Bahia Blanca, Buenos Aires, ArgentinaUniv Nacl Sur UNS, Dept Matemat, Bahia Blanca, Buenos Aires, Argentina
机构:
Jiangxi Normal Univ, Coll Math & Informat Sci, Nanchang 330022, Jiangxi, Peoples R ChinaJiangxi Normal Univ, Coll Math & Informat Sci, Nanchang 330022, Jiangxi, Peoples R China
Hong, Qing
Lu, Guozhen
论文数: 0引用数: 0
h-index: 0
机构:
Univ Connecticut, Dept Math, Storrs, CT 06269 USAJiangxi Normal Univ, Coll Math & Informat Sci, Nanchang 330022, Jiangxi, Peoples R China
机构:
Seoul Natl Univ, Dept Math, Seoul 151747, South Korea
Seoul Natl Univ, Res Inst Math, Seoul 151747, South KoreaSeoul Natl Univ, Dept Math, Seoul 151747, South Korea
Byun, Sun-Sig
Palagachev, Dian K.
论文数: 0引用数: 0
h-index: 0
机构:
Politecn Bari, DMMM, I-70125 Bari, ItalySeoul Natl Univ, Dept Math, Seoul 151747, South Korea