Parameter Identification for Lithium-Ion Battery Based on Hybrid Genetic-Fractional Beetle Swarm Optimization Method

被引:3
|
作者
Guo, Peng [1 ]
Wu, Xiaobo [2 ]
Lopes, Antonio M. [3 ]
Cheng, Anyu [1 ]
Xu, Yang [1 ]
Chen, Liping [2 ]
机构
[1] Chongqing Univ Posts & Telecommun, Coll Automat, Chongqing 400065, Peoples R China
[2] Hefei Univ Technol, Sch Elect Engn & Automat, Hefei 230009, Peoples R China
[3] Univ Porto, Fac Engn, LAETA INEGI, Rua Dr Roberto Frias, P-4200465 Porto, Portugal
关键词
FO equivalent circuit; parameter identification; genetic algorithm; beetle swarm optimization;
D O I
10.3390/math10173056
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper proposes a fractional order (FO) impedance model for lithium-ion batteries and a method for model parameter identification. The model is established based on electrochemical impedance spectroscopy (EIS). A new hybrid genetic-fractional beetle swarm optimization (HGA-FBSO) scheme is derived for parameter identification, which combines the advantages of genetic algorithms (GA) and beetle swarm optimization (BSO). The approach leads to an equivalent circuit model being able to describe accurately the dynamic behavior of the lithium-ion battery. Experimental results illustrate the effectiveness of the proposed method, yielding voltage estimation root-mean-squared error (RMSE) of 10.5 mV and mean absolute error (MAE) of 0.6058%. This corresponds to accuracy improvements of 32.26% and 7.89% for the RMSE, and 43.83% and 13.67% for the MAE, when comparing the results of the new approach to those obtained with the GA and the FBSO methods, respectively.
引用
下载
收藏
页数:11
相关论文
共 50 条
  • [31] Status and Prospects of Research on Lithium-Ion Battery Parameter Identification
    Li, Jianlin
    Peng, Yuchen
    Wang, Qian
    Liu, Haitao
    BATTERIES-BASEL, 2024, 10 (06):
  • [32] A simplified fractional order impedance model and parameter identification method for lithium-ion batteries
    Yang, Qingxia
    Xu, Jun
    Cao, Binggang
    Li, Xiuqing
    PLOS ONE, 2017, 12 (02):
  • [33] Lithium-Ion Battery Parameter Identification for Hybrid and Electric Vehicles Using Drive Cycle Data
    Ghoulam, Yasser
    Mesbahi, Tedjani
    Wilson, Peter
    Durand, Sylvain
    Lewis, Andrew
    Lallement, Christophe
    Vagg, Christopher
    ENERGIES, 2022, 15 (11)
  • [34] Thermal Analysis for Lithium-Ion Battery Pack based on Parameter Estimation based on Genetic Algorithm
    Wang, Yong
    Deng, Yelin
    Liu, Weiwei
    Hao, Kunkun
    Zhang, Hongchao
    INTERNATIONAL CONFERENCE ON ENERGY, POWER AND MECHANICAL ENGINEERING (EPME2019), 2020, 793
  • [35] Parameter Identification and Dynamic Simulation of Lithium-Ion Power Battery Based on DP Model
    Feng, Dong
    Huang, Jun
    Jin, Peng
    Chen, Haitao
    Wang, Anyuan
    Zheng, Minxin
    PROCEEDINGS OF THE 2019 14TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2019), 2019, : 1285 - 1289
  • [36] Parameter identification of a lithium-ion battery based on the improved recursive least square algorithm
    Ren, Biying
    Xie, Chenxue
    Sun, Xiangdong
    Zhang, Qi
    Yan, Dan
    IET POWER ELECTRONICS, 2020, 13 (12) : 2531 - 2537
  • [37] Recursive Parameter Identification of Lithium-Ion Battery for EVs Based on Equivalent Circuit Model
    Dai, Haifeng
    Wei, Xuezhe
    Sun, Zechang
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2013, 10 (12) : 2813 - 2818
  • [38] Identification of Fractional Differential Models for Lithium-ion Polymer Battery Dynamics
    Jiang, Yunfeng
    Xia, Bing
    Zhao, Xin
    Truong Nguyen
    Mi, Chris
    de Callafon, Raymond A.
    IFAC PAPERSONLINE, 2017, 50 (01): : 405 - 410
  • [39] CPSO-Based Parameter-Identification Method for the Fractional-Order Modeling of Lithium-Ion Batteries
    Yu, Zhihao
    Huai, Ruituo
    Li, Hongyu
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2021, 36 (10) : 11109 - 11123
  • [40] A hybrid kernel extreme learning machine modeling method based on improved dung beetle algorithm optimization for lithium-ion battery state of health estimation
    Mo, Daijiang
    Wang, Shunli
    Zhang, Mengyun
    Fan, Yongcun
    Wang, Yangtao
    Zeng, Jiawei
    IONICS, 2024, 30 (07) : 3995 - 4009