The effect of nanostructure on the thermal properties of fluorinated carbon nanofibres

被引:15
|
作者
Disa, Elodie [1 ,2 ]
Dubois, Marc [1 ,2 ]
Guerin, Katia [1 ,2 ]
Kharbache, Hayat [3 ]
Masin, Francis [3 ]
Hamwi, Andre [1 ,2 ]
机构
[1] Univ Blaise Pascal, Clermont Univ, Lab Mat Inorgan, F-63000 Clermont Ferrand, France
[2] LMI, CNRS, UMR 6002, F-63171 Aubiere, France
[3] Univ Libre Bruxelles, B-1050 Brussels, Belgium
关键词
SOLID-STATE NMR; GRAPHITE FLUORIDE; PART I; DECOMPOSITION; RAMAN; MONOFLUORIDE); STABILITY; AGENT; (CF)N; TBF4;
D O I
10.1016/j.carbon.2011.06.092
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Using thermogravimetic analysis in air, the thermal properties of fluorinated carbon nanofibres have been investigated. The fluorination level, the C-F bonding, the number of structural defects and the distribution of fluorine atoms in the carbon matrix have been modified using three fluorination routes, (i) a direct process using a flux of pure molecular fluorine F-2 (dynamic process), (ii) a filling of a closed reactor by this reactive gas (static process) and (iii) controlled fluorination using the thermal decomposition of a solid fluorinating agent TbF4. At given fluorine contents, only the location of the fluorine atoms within the nanofibre changes the thermal stability, which can be increased up to 480 degrees C; such improvement is obtained when the fluorinated regions are located in the outer shell (tubes). (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4801 / 4811
页数:11
相关论文
共 50 条
  • [21] Effect of oxidized and fluorinated MWCNTs on mechanical, thermal and tribological properties of fluoroelastomer/carbon black/MWCNT hybrid nanocomposite
    Tagelsir, Yasin
    Li, San-Xi
    Lv, Xiaoren
    Wang, Shijie
    Wang, Song
    Osman, Z.
    MATERIALS RESEARCH EXPRESS, 2018, 5 (06):
  • [22] Influences of nonsolvent on the morphologies and electrochemical properties of carbon nanofibres from electrospun polyacrylonitrile nanofibres
    Zhao, Yulai
    Zhao, Zhuang
    Gao, Jiao
    Jiang, Xiancai
    Shao, Li
    Li, Hongmei
    Hou, Linxi
    BULLETIN OF MATERIALS SCIENCE, 2018, 41 (01)
  • [23] THERMAL-STABILITY OF FLUORINATED CARBON
    KURNEVICH, GI
    KIZINA, TA
    SKOROPANOV, AS
    KUTSENOK, YB
    SHNITKO, GN
    DANILKIN, VI
    VECHER, AA
    INORGANIC MATERIALS, 1989, 25 (01) : 27 - 30
  • [24] Influences of nonsolvent on the morphologies and electrochemical properties of carbon nanofibres from electrospun polyacrylonitrile nanofibres
    Yulai Zhao
    Zhuang Zhao
    Jiao Gao
    Xiancai Jiang
    Li Shao
    Hongmei Li
    Linxi Hou
    Bulletin of Materials Science, 2018, 41
  • [25] Strengthening mechanisms and properties of composite materials with carbon nanofibres
    1600, Institute for Problems in Mechanical Engineering, Russian Academy of Sciences (25):
  • [26] Thermal stability and mechanical properties of fluorinated diamond-like carbon coatings
    Nobili, L.
    Guglielmini, A.
    SURFACE & COATINGS TECHNOLOGY, 2013, 219 : 144 - 150
  • [27] Mechanical and Thermal Properties of Epoxy Composites Reinforced Fluorinated Illite and Carbon Nanotube
    Lee, Kyeong Min
    Lee, Si-Eun
    Kim, Min Il
    Kim, Hyeong Gi
    Lee, Young-Seak
    APPLIED CHEMISTRY FOR ENGINEERING, 2016, 27 (03): : 285 - 290
  • [28] Coupled thermal analysis of carbon layers deposited on alumina nanofibres
    Solodovnichenko, Vera S.
    Simunin, Mikhail M.
    Lebedev, Denis, V
    Voronin, Anton S.
    Emelianov, Aleksei, V
    Mikhlin, Yuri L.
    Parfenov, Vladimir A.
    Ryzhkov, Ilya I.
    THERMOCHIMICA ACTA, 2019, 675 : 164 - 171
  • [29] Thermal actuation of hydrogels from PNIPAm, alginate, and carbon nanofibres
    Warren, Holly
    Panhuis, Marc In Het
    Spinks, Geoffrey M.
    Officer, David L.
    JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2018, 56 (01) : 46 - 52
  • [30] Effect of Na-ion intercalation on the thermal conductivity of carbon honeycomb nanostructure
    Zhang, Jingqiang
    Liu, Wenlu
    Yang, Libin
    Zhou, Runhua
    He, Wei
    Liu, Bo
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (41) : 25537 - 25546