Smart Switch Metamaterials for Multiband Radio Frequency Antennas

被引:6
|
作者
Wolcott, Paul J. [1 ]
Hopkins, Christopher D. [1 ]
Zhang, Lanlin [2 ]
Dapino, Marcelo J. [1 ]
机构
[1] Ohio State Univ, Smart Mat & Struct Lab, Dept Mech & Aerosp Engn, Columbus, OH 43210 USA
[2] Ohio State Univ, Electrosci Lab, Dept Elect & Comp Engn, Columbus, OH 43210 USA
关键词
ultrasonic additive manufacturing; ultrasonic consolidation; metamaterials; metal matrix composites; smart materials; RF antennas; ULTRASONIC CONSOLIDATION; PROCESS PARAMETERS; ALUMINUM;
D O I
10.1177/1045389X11414085
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We investigate metal-matrix composite metamaterials with embedded electrical switches made of shape memory nickel-titanium (Ni-Ti) for use in broadband radio frequency (RF) antennas. Experiments show that a Ni-Ti ribbon can form an electrical contact that opens and closes depending on the Ni-Ti phase being austenite or martensite. Finite element modeling of thermal gradients illustrates the phase change within the ribbon. Ultrasonic additive manufacturing (UAM), a solid-state additive manufacturing process, was utilized for embedding a Ni-Ti switch in an aluminum matrix. The aluminum matrix must have structural-grade strength for use in load-carrying antennas; thus, mechanical testing was conducted to quantify the longitudinal tensile, transverse tensile, and shear strength of the UAM matrix. Reconfiguration using a Ni-Ti switch was proven using a shape memory switch on a monopole RF antenna producing an operating frequency shift from 270 to 185 MHz when the switch is connected. A planar microstrip line was used to demonstrate signal transmission and reflection efficiency in a smaller, second switch. Transmission tests yielded less than -10 dB signal reflection proving the feasibility of reconfigurable planar antenna arrays using smart switches.
引用
收藏
页码:1469 / 1478
页数:10
相关论文
共 50 条
  • [31] Antennas for low-frequency radio telescope of SKA
    Agaram Raghunathan
    Keerthipriya Satish
    Arasi Sathyamurthy
    T. Prabu
    B. S. Girish
    K. S. Srivani
    Shiv K. Sethi
    Journal of Astrophysics and Astronomy, 44
  • [32] Broadband/multiband printed antennas
    Hori, T
    IEICE TRANSACTIONS ON COMMUNICATIONS, 2005, E88B (05) : 1809 - 1817
  • [33] Figure of merit for multiband antennas
    Rius, JM
    Santos, MC
    Parrón, J
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2003, 51 (11) : 3177 - 3180
  • [34] Design of Multiband Reconfigurable Antennas
    Raines, Bryan D.
    Rojas, Roberto G.
    PROCEEDINGS OF THE FOURTH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION, 2010,
  • [35] Multiband Rectangular Microstrip Antennas
    Deshmukh, Amit A.
    Ray, K. P.
    IETE JOURNAL OF RESEARCH, 2011, 57 (05) : 437 - 442
  • [36] Antennas for low-frequency radio telescope of SKA
    Raghunathan, Agaram
    Satish, Keerthipriya
    Sathyamurthy, Arasi
    Prabu, T.
    Girish, B. S.
    Srivani, K. S.
    Sethi, Shiv K.
    JOURNAL OF ASTROPHYSICS AND ASTRONOMY, 2023, 44 (01)
  • [37] Multiband Antennas for SDR Applications
    Surducan, E.
    Surducan, V.
    Iancu, D.
    Glossner, J.
    INTERNATIONAL JOURNAL OF DIGITAL MULTIMEDIA BROADCASTING, 2009, 2009
  • [38] Next Generation Flexible Antennas for Radio Frequency Applications
    Razaq A.
    Khan A.A.
    Shakir U.
    Arshad A.
    Transactions on Electrical and Electronic Materials, 2018, 19 (05) : 311 - 318
  • [39] Neural analysis for Multiband Antennas
    Sonker, Anuradha
    Kumar, Pravin
    Bhaliyan, Krishanjeet
    2015 INTERNATIONAL CONFERENCE ON COMPUTATION OF POWER, ENERGY, INFORMATION AND COMMUNICATION (ICCPEIC), 2015, : 43 - 46
  • [40] Fractal and multiband communication antennas
    Lee, Y
    Yeo, J
    Mittra, R
    Ganguly, S
    Tenbarge, J
    2003 IEEE TOPICAL CONFERENCE ON WIRELESS COMMUNICATION TECHNOLOGY, 2003, : 273 - 274