Smart Switch Metamaterials for Multiband Radio Frequency Antennas

被引:6
|
作者
Wolcott, Paul J. [1 ]
Hopkins, Christopher D. [1 ]
Zhang, Lanlin [2 ]
Dapino, Marcelo J. [1 ]
机构
[1] Ohio State Univ, Smart Mat & Struct Lab, Dept Mech & Aerosp Engn, Columbus, OH 43210 USA
[2] Ohio State Univ, Electrosci Lab, Dept Elect & Comp Engn, Columbus, OH 43210 USA
关键词
ultrasonic additive manufacturing; ultrasonic consolidation; metamaterials; metal matrix composites; smart materials; RF antennas; ULTRASONIC CONSOLIDATION; PROCESS PARAMETERS; ALUMINUM;
D O I
10.1177/1045389X11414085
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We investigate metal-matrix composite metamaterials with embedded electrical switches made of shape memory nickel-titanium (Ni-Ti) for use in broadband radio frequency (RF) antennas. Experiments show that a Ni-Ti ribbon can form an electrical contact that opens and closes depending on the Ni-Ti phase being austenite or martensite. Finite element modeling of thermal gradients illustrates the phase change within the ribbon. Ultrasonic additive manufacturing (UAM), a solid-state additive manufacturing process, was utilized for embedding a Ni-Ti switch in an aluminum matrix. The aluminum matrix must have structural-grade strength for use in load-carrying antennas; thus, mechanical testing was conducted to quantify the longitudinal tensile, transverse tensile, and shear strength of the UAM matrix. Reconfiguration using a Ni-Ti switch was proven using a shape memory switch on a monopole RF antenna producing an operating frequency shift from 270 to 185 MHz when the switch is connected. A planar microstrip line was used to demonstrate signal transmission and reflection efficiency in a smaller, second switch. Transmission tests yielded less than -10 dB signal reflection proving the feasibility of reconfigurable planar antenna arrays using smart switches.
引用
下载
收藏
页码:1469 / 1478
页数:10
相关论文
共 50 条
  • [1] Blind multiband spectrum sensing for cognitive radio systems with smart antennas
    Qing, Haobo
    Liu, Yuanan
    Xie, Gang
    Liu, Kaiming
    Liu, Fang
    IET COMMUNICATIONS, 2014, 8 (06) : 914 - 920
  • [2] Nanoparticle-Based Metamaterials as Multiband Plasmonic Resonator Antennas
    Cetin, Arif E.
    Turkmen, Mustafa
    Aksu, Serap
    Altug, Hatice
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2012, 11 (01) : 208 - 212
  • [3] Radio frequency (RF) metamaterials
    Wiltshire, M. C. K.
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2007, 244 (04): : 1227 - 1236
  • [4] Compact multiband planar monopole antennas for smart phone applications
    Hua, R. -C.
    Chou, C. -F.
    Wu, S. -J.
    Ma, T. -G.
    IET MICROWAVES ANTENNAS & PROPAGATION, 2008, 2 (05) : 473 - 481
  • [5] A Review on the History and Current Literature of Metamaterials and Its Applications to Antennas & Radio Frequency Identification (RFID) Devices
    Abdullah, Shakeeb
    Xiao, Gaozhi
    Amaya, Rony E.
    IEEE JOURNAL OF RADIO FREQUENCY IDENTIFICATION, 2021, 5 (04): : 427 - 445
  • [6] RADIO FREQUENCY SWITCH.
    Ogasawara, Nobuo
    1978, 24 (01): : 58 - 67
  • [7] Power Quantification of Multiband Radio Frequency Harvesting
    Bucu, Ma. Beatriz C.
    Cruz, Noel B.
    Leyba, Ranniel Aurelius R.
    Pilares, Robert Jay T.
    2015 INTERNATIONAL CONFERENCE ON HUMANOID, NANOTECHNOLOGY, INFORMATION TECHNOLOGY,COMMUNICATION AND CONTROL, ENVIRONMENT AND MANAGEMENT (HNICEM), 2015, : 557 - +
  • [8] Smart antennas in software radio base stations
    Pérez-Neira, A
    Mestre, X
    Fonollosa, JR
    IEEE COMMUNICATIONS MAGAZINE, 2001, 39 (02) : 166 - 173
  • [9] Radio frequency radiation (RFR) from radio antennas
    Sirav, B
    Seyhan, N
    2003 IEEE INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY (EMC), VOLS 1 AND 2, SYMPOSIUM RECORD, 2003, : 1232 - 1236
  • [10] Multiband Antennas for GSM/GPS/LTE/WLAN Smart Watch Applications
    Chen, Wen-Shan
    Lin, Guan-Quan
    Zhang, Guang-Ren
    Sim, Chow-Yen-Desmond
    2017 IEEE SIXTH ASIA-PACIFIC CONFERENCE ON ANTENNAS AND PROPAGATION (APCAP), 2017,