COMPARISON BETWEEN ADIABATIC AND NONADIABATIC ABSORPTION CHILLERS USING AMMONIA-LITHIUM NITRATE AND WATER LITHIUM BROMIDE SOLUTIONS

被引:5
|
作者
Zacarias, A. [1 ]
Quiroz, J. A. [1 ]
Gutierrez-Urueta, G. L. [2 ]
Venegas, M. [3 ]
Carvajal, I [4 ]
Rubio, J. [1 ]
机构
[1] Inst Politecn Nacl, ESIME Azcapotzalco, Av las Granjas 682, Ciudad De Mexico 02250, Mexico
[2] Univ Autonoma San Luis Potosi, Dept Ingn Mecan Elect, Dr Manuel Nava 8, San Luis Potosi 78290, San Luis Potosi, Mexico
[3] Univ Carlos III Madrid, Dept Ingn Term & Fluidos, Avda Univ 30, Madrid 28911, Spain
[4] Inst Politecn Nacl, ESIME, UPALM, Ciudad De Mexico 07738, Mexico
关键词
ammonia-lithium nitrate; water-lithium bromide; adiabatic absorption; nonadiabatic absorption; chiller; REFRIGERATION SYSTEM; PLUS WATER; PERFORMANCE; VAPOR; PUMP; NH3-LINO3; DESIGN;
D O I
10.1615/HeatTransRes.2019026621
中图分类号
O414.1 [热力学];
学科分类号
摘要
This work deals with the comparison of the performance of a single-effect absorption chiller using two main configurations: equipped with a nonadiabatic absorber or an adiabatic one. Simulations were developed based on thermodynamic balances, operating with ammonia-lithium nitrate (NH3-LiNO3) and water-lithium bromide (H2O-LiBr) as working pairs. Parameters of evaluation are the coefficient of performance COP, circulation ratio f, and driving heat rate Q(g). Results illustrate that the nonadiabatic absorption system presents better performance parameters for a given operating point, attributable to a higher concentration change in the absorber for a fixed cooling capacity. When the generator temperature T-g is varied, a strong influence on the performance parameters f, Q(g), and COP is observed. However, from a certain value of T-g its variation has a less influence on the performance. When the condenser temperature increases, the COP decreases. The contrary happens if the evaporation temperature is increased. This is valid for both adiabatic and nonadiabatic cases.
引用
收藏
页码:609 / 621
页数:13
相关论文
共 50 条
  • [21] Thermal conductivity of ammonia plus lithium nitrate and ammonia plus lithium nitrate plus water solutions over a wide range of concentrations and temperatures
    Cuenca, Yolanda
    Salavera, Daniel
    Vernet, Anton
    Teja, Amyn S.
    Valles, Mariel
    INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2014, 38 : 333 - 340
  • [22] Performance of solar-driven ammonia-lithium nitrate and ammonia-sodium thiocyanate absorption systems operating as coolers or heat pumps in Athens
    Antonopoulos, KA
    Rogdakis, ED
    APPLIED THERMAL ENGINEERING, 1996, 16 (02) : 127 - 147
  • [23] Vapor-liquid equilibrium of ammonia plus lithium nitrate plus water and ammonia plus lithium nitrate solutions from (293.15 to 353.15) K
    Libotean, Simona
    Salavera, Daniel
    Valles, Manel
    Esteve, Xavier
    Coronas, Alberto
    JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2007, 52 (03): : 1050 - 1055
  • [24] Pre-industrial development and experimental characterization of new air-cooled and water-cooled ammonia/lithium nitrate absorption chillers
    Zamora, Miguel
    Bourouis, Mahmoud
    Coronas, Alberto
    Valles, Manel
    INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2014, 45 : 189 - 197
  • [25] Vapor-Liquid Equilibrium of Ammonia-Water-Lithium Nitrate Solutions
    Sathyabhama, A.
    Babu, T.
    HEAT TRANSFER-ASIAN RESEARCH, 2011, 40 (06): : 483 - 494
  • [26] THERMODYNAMIC DESIGN-DATA FOR ABSORPTION HEAT-PUMP SYSTEMS OPERATING ON AMMONIA-LITHIUM NITRATE .2. HEATING
    BEST, R
    RIVERA, W
    PILATOWSKY, I
    HOLLAND, FA
    HEAT RECOVERY SYSTEMS & CHP, 1991, 11 (2-3): : 103 - 111
  • [27] Performance of ammonia-water-lithium bromide ternary working fluid absorption refrigeration
    Xu, Mengkai
    Li, Shuhong
    Jin, Zhenghao
    Huagong Xuebao/CIESC Journal, 2021, 72 : 127 - 133
  • [28] Mathematical Model of a Lithium-Bromide/Water Absorption Refrigeration System Equipped with an Adiabatic Absorber
    Osta-Omar, Salem M.
    Micallef, Christopher
    COMPUTATION, 2016, 4 (04):
  • [29] Spray absorbers in absorption systems using lithium nitrate-ammonia solution
    Venegas, M
    Rodríguez, P
    Lecuona, A
    Izquierdo, M
    INTERNATIONAL JOURNAL OF REFRIGERATION, 2005, 28 (04) : 554 - 564
  • [30] Thermodynamic design data and performance evaluation of the water plus lithium bromide plus lithium iodide plus lithium nitrate plus lithium chloride system for absorption chiller
    Lee, HR
    Koo, KK
    Jeong, S
    Kim, JS
    Lee, H
    Oh, YS
    Park, DR
    Baek, YS
    APPLIED THERMAL ENGINEERING, 2000, 20 (08) : 707 - 720