COMPARISON BETWEEN ADIABATIC AND NONADIABATIC ABSORPTION CHILLERS USING AMMONIA-LITHIUM NITRATE AND WATER LITHIUM BROMIDE SOLUTIONS

被引:5
|
作者
Zacarias, A. [1 ]
Quiroz, J. A. [1 ]
Gutierrez-Urueta, G. L. [2 ]
Venegas, M. [3 ]
Carvajal, I [4 ]
Rubio, J. [1 ]
机构
[1] Inst Politecn Nacl, ESIME Azcapotzalco, Av las Granjas 682, Ciudad De Mexico 02250, Mexico
[2] Univ Autonoma San Luis Potosi, Dept Ingn Mecan Elect, Dr Manuel Nava 8, San Luis Potosi 78290, San Luis Potosi, Mexico
[3] Univ Carlos III Madrid, Dept Ingn Term & Fluidos, Avda Univ 30, Madrid 28911, Spain
[4] Inst Politecn Nacl, ESIME, UPALM, Ciudad De Mexico 07738, Mexico
关键词
ammonia-lithium nitrate; water-lithium bromide; adiabatic absorption; nonadiabatic absorption; chiller; REFRIGERATION SYSTEM; PLUS WATER; PERFORMANCE; VAPOR; PUMP; NH3-LINO3; DESIGN;
D O I
10.1615/HeatTransRes.2019026621
中图分类号
O414.1 [热力学];
学科分类号
摘要
This work deals with the comparison of the performance of a single-effect absorption chiller using two main configurations: equipped with a nonadiabatic absorber or an adiabatic one. Simulations were developed based on thermodynamic balances, operating with ammonia-lithium nitrate (NH3-LiNO3) and water-lithium bromide (H2O-LiBr) as working pairs. Parameters of evaluation are the coefficient of performance COP, circulation ratio f, and driving heat rate Q(g). Results illustrate that the nonadiabatic absorption system presents better performance parameters for a given operating point, attributable to a higher concentration change in the absorber for a fixed cooling capacity. When the generator temperature T-g is varied, a strong influence on the performance parameters f, Q(g), and COP is observed. However, from a certain value of T-g its variation has a less influence on the performance. When the condenser temperature increases, the COP decreases. The contrary happens if the evaporation temperature is increased. This is valid for both adiabatic and nonadiabatic cases.
引用
收藏
页码:609 / 621
页数:13
相关论文
共 50 条
  • [1] On the recirculation of ammonia-lithium nitrate in adiabatic absorbers for chillers
    Ventas, R.
    Lecuona, A.
    Legrand, M.
    Rodríguez-Hidalgo, M. C.
    [J]. APPLIED THERMAL ENGINEERING, 2010, 30 (17-18) : 2770 - 2777
  • [2] Experimental evaluation of ammonia adiabatic absorption into ammonia-lithium nitrate solution using a fog jet nozzle
    Zacarias, Alejandro
    Venegas, Maria
    Lecuona, Antonio
    Ventas, Ruben
    [J]. APPLIED THERMAL ENGINEERING, 2013, 50 (01) : 781 - 790
  • [3] Experimental assessment of ammonia adiabatic absorption into ammonia-lithium nitrate solution using a flat fan nozzle
    Zacarias, A.
    Venegas, M.
    Ventas, R.
    Lecuona, A.
    [J]. APPLIED THERMAL ENGINEERING, 2011, 31 (16) : 3569 - 3579
  • [4] Comparison and analysis of lithium bromide-water absorption chillers using plastic heat transfer tubes and traditional lithium bromide-water absorption chillers
    Zhang, Xue-dong
    [J]. World Academy of Science, Engineering and Technology, 2010, 41 : 573 - 576
  • [5] A comparison between ammonia-water and water-lithium bromide solutions in absorption heat transformers
    Kurem, E
    Horuz, I
    [J]. INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2001, 28 (03) : 427 - 438
  • [6] A comparison between ammonia-water and water-lithium bromide solutions in Vapor Absorption Refrigeration systems
    Horuz, I
    [J]. INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 1998, 25 (05) : 711 - 721
  • [7] Experimental comparison between ammonia-water and ammonia-water-lithium bromide in absorption chiller
    Yu, Zhiqiang
    Wu, Tiehui
    Wu, Yuyuan
    Zhao, Haichen
    [J]. Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2009, 43 (03): : 46 - 49
  • [8] Modeling water/lithium bromide absorption chillers in ASPEN Plus
    Somers, C.
    Mortazavi, A.
    Hwang, Y.
    Radermacher, R.
    Rodgers, P.
    Al-Hashimi, S.
    [J]. APPLIED ENERGY, 2011, 88 (11) : 4197 - 4205
  • [9] Comparison of single and double stage absorption and resorption heat transformers operating with the ammonia-lithium nitrate mixture
    Hernandez-Magallanes, J. A.
    Rivera, W.
    Coronas, A.
    [J]. APPLIED THERMAL ENGINEERING, 2017, 125 : 53 - 68
  • [10] Optimization of energy plants including water/lithium bromide absorption chillers
    Bruno, JC
    Miquel, J
    Castells, F
    [J]. INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2000, 24 (08) : 695 - 717