Generating admissible heuristics by abstraction for search in stochastic domains

被引:0
|
作者
Beliaeva, N [1 ]
Zilberstein, S [1 ]
机构
[1] Univ Massachusetts, Dept Comp Sci, Amherst, MA 01003 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Search in abstract spaces has been shown to produce useful admissible heuristic estimates in deterministic domains. We show in this paper how to generalize these results to search in stochastic domains. Solving stochastic optimization problems is significantly harder than solving their deterministic counterparts. Designing admissible heuristics for stochastic domains is also much harder. Therefore, deriving such heuristics automatically using abstraction is particularly beneficial. We analyze this approach both theoretically and empirically and show that it produces significant computational savings when used in conjunction with the heuristic search algorithm LAO*.
引用
收藏
页码:14 / 29
页数:16
相关论文
共 50 条
  • [21] Likely-admissible and sub-symbolic heuristics
    Ernandes, M
    Gori, M
    [J]. ECAI 2004: 16TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2004, 110 : 613 - 617
  • [22] Verification and Synthesis of Admissible Heuristics for Kinodynamic Motion Planning
    Paden, Brian
    Varricchio, Valerie
    Frazzoli, Emilio
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2017, 2 (02): : 648 - 655
  • [23] Generating Heuristics for Novice Players
    de Mesentier Silva, Fernando
    Isaksen, Aaron
    Togelius, Julian
    Nealen, Andy
    [J]. 2016 IEEE CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND GAMES (CIG), 2016,
  • [24] Generating A-Star Algorithm Admissible Heuristics Using a Dynamic Dataloader on Neural Networks, Enhanced With Genetic Algorithms, on a Distributed Architecture
    Amine, Ouardi
    Mohammed, Mestari
    [J]. IEEE ACCESS, 2023, 11 : 18356 - 18373
  • [25] COMPLEXITY OF ADMISSIBLE SEARCH ALGORITHMS
    MARTELLI, A
    [J]. ARTIFICIAL INTELLIGENCE, 1977, 8 (01) : 1 - 13
  • [26] A Heuristic Search Approach to Planning with Continuous Resources in Stochastic Domains
    Meuleau, Nicolas
    Benazera, Emmanuel
    Brafman, Ronen I.
    Hansen, Eric A.
    Mausam
    [J]. JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2009, 34 : 27 - 59
  • [27] STOCHASTIC CHOICE HEURISTICS
    ASCHENBRENNER, KM
    ALBERT, D
    SCHMALHOFER, F
    [J]. ACTA PSYCHOLOGICA, 1984, 56 (1-3) : 153 - 166
  • [28] Generating SAT local-search heuristics using a GP hyper-heuristic framework
    Bader-El-Den, Mohamed
    Poli, Riccardo
    [J]. ARTIFICIAL EVOLUTION, 2008, 4926 : 37 - 49
  • [29] Abstraction in ecology: reductionism and holism as complementary heuristics
    Jani Raerinne
    [J]. European Journal for Philosophy of Science, 2018, 8 : 395 - 416
  • [30] Abstraction Heuristics, Cost Partitioning and Network Flows
    Pommerening, Florian
    Helmert, Malte
    Bonet, Blai
    [J]. TWENTY-SEVENTH INTERNATIONAL CONFERENCE ON AUTOMATED PLANNING AND SCHEDULING, 2017, : 228 - 232