Generating admissible heuristics by abstraction for search in stochastic domains

被引:0
|
作者
Beliaeva, N [1 ]
Zilberstein, S [1 ]
机构
[1] Univ Massachusetts, Dept Comp Sci, Amherst, MA 01003 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Search in abstract spaces has been shown to produce useful admissible heuristic estimates in deterministic domains. We show in this paper how to generalize these results to search in stochastic domains. Solving stochastic optimization problems is significantly harder than solving their deterministic counterparts. Designing admissible heuristics for stochastic domains is also much harder. Therefore, deriving such heuristics automatically using abstraction is particularly beneficial. We analyze this approach both theoretically and empirically and show that it produces significant computational savings when used in conjunction with the heuristic search algorithm LAO*.
引用
收藏
页码:14 / 29
页数:16
相关论文
共 50 条
  • [1] Optimal admissible composition of abstraction heuristics
    Katz, Michael
    Domshlak, Carmel
    [J]. ARTIFICIAL INTELLIGENCE, 2010, 174 (12-13) : 767 - 798
  • [2] Automatically Generating Search Heuristics for Concolic Testing
    Cha, Sooyoung
    Hong, Seongjoon
    Lee, Junhee
    Oh, Hakjoo
    [J]. PROCEEDINGS 2018 IEEE/ACM 40TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING (ICSE), 2018, : 1244 - 1254
  • [3] Augmenting Stochastic Local Search with Heuristics
    Lasisi, Ramoni O.
    DuPont, Robert
    [J]. 2018 9TH IEEE ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2018, : 763 - 768
  • [4] Analyzing randomized search heuristics via stochastic domination
    Doerr, Benjamin
    [J]. THEORETICAL COMPUTER SCIENCE, 2019, 773 : 115 - 137
  • [5] Implicit Abstraction Heuristics
    Katz, Michael
    Domshalk, Carmel
    [J]. JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2010, 39 : 51 - 126
  • [6] STUDIES IN SEMI-ADMISSIBLE HEURISTICS
    PEARL, J
    KIM, JH
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1982, 4 (04) : 392 - 399
  • [7] MACHINE DISCOVERY OF EFFECTIVE ADMISSIBLE HEURISTICS
    PRIEDITIS, AE
    [J]. MACHINE LEARNING, 1993, 12 (1-3) : 117 - 141
  • [8] A*-Admissible Heuristics for Rapid Lexical Access
    Kenny, Patrick
    Hollan, Rene
    Gupta, Vishwa N.
    Lennig, Matthew
    Mermelstein, P.
    O'Shaughnessy, Douglas
    [J]. IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, 1993, 1 (01): : 49 - 58
  • [9] Hierarchical Heuristic Forward Search in Stochastic Domains
    Meuleau, Nicolas
    Brafman, Ronen I.
    [J]. 20TH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2007, : 2542 - 2549
  • [10] Generating admissible space-time meshes for moving domains in (d+1) dimensions
    Neumueller, Martin
    Karabelas, Elias
    [J]. SPACE-TIME METHODS: APPLICATIONS TO PARTIAL DIFFERENTIAL EQUATIONS, 2019, 25 : 185 - 206