Bott-Chern cohomology of solvmanifolds

被引:28
|
作者
Angella, Daniele [1 ]
Kasuya, Hisashi [2 ]
机构
[1] Univ Firenze, Dipartimento Matemat & Informat Ulisse Dini, Via Morgagni 67-A, I-50134 Florence, Italy
[2] Osaka Univ, Grad Sch Sci, Dept Math, Osaka, Japan
关键词
Dolbeault cohomology; Bott-Chern cohomology; Solvmanifolds; Invariant complex structure; FROLICHER SPECTRAL SEQUENCE; INVARIANT COMPLEX STRUCTURE; DOLBEAULT COHOMOLOGY; COMPACT NILMANIFOLDS; KAHLER MANIFOLDS; MINIMAL MODELS; LOCAL SYSTEMS; LIE-ALGEBRAS; HODGE THEORY; DEFORMATIONS;
D O I
10.1007/s10455-017-9560-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study conditions under which sub-complexes of a double complex of vector spaces allow to compute the Bott-Chern cohomology. We are especially aimed at studying the Bott-Chern cohomology of special classes of solvmanifolds, namely, complex parallelizable solvmanifolds and solvmanifolds of splitting type. More precisely, we can construct explicit finite-dimensional double complexes that allow to compute the Bott-Chern cohomology of compact quotients of complex Lie groups, respectively, of some Lie groups of the type where N is nilpotent. As an application, we compute the Bott-Chern cohomology of the complex parallelizable Nakamura manifold and of the completely solvable Nakamura manifold. In particular, the latter shows that the property of satisfying the -Lemma is not strongly closed under deformations of the complex structure.
引用
收藏
页码:363 / 411
页数:49
相关论文
共 50 条
  • [31] Localization of Bott-Chern classes and Hermitian residues
    Correa, Mauricio, Jr.
    Suwa, Tatsuo
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2020, 101 (01): : 349 - 372
  • [32] Bott-Chern Laplacian on almost Hermitian manifolds
    Piovani, Riccardo
    Tomassini, Adriano
    MATHEMATISCHE ZEITSCHRIFT, 2022, 301 (03) : 2685 - 2707
  • [33] Aeppli and Bott-Chern cohomology for bi-generalized Hermitian manifolds and d′d"-lemma
    Chen, Tai-Wei
    Ho, Chung-, I
    Teh, Jyh-Haur
    JOURNAL OF GEOMETRY AND PHYSICS, 2015, 93 : 40 - 51
  • [34] BOTT-CHERN HARMONIC FORMS ON STEIN MANIFOLDS
    Piovani, Riccardo
    Tomassini, Adriano
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (04) : 1551 - 1564
  • [35] Computations of Bott-Chern classes on P(E)
    Mourougane, C
    DUKE MATHEMATICAL JOURNAL, 2004, 124 (02) : 389 - 420
  • [36] Bott-Chern harmonic forms on complete Hermitian manifolds
    Piovani, Riccardo
    Tomassini, Adriano
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2019, 30 (05)
  • [37] Higher Bott-Chern forms and Beilinson's regulator
    Jose Ignacio Burgos
    Steve Wang
    Inventiones mathematicae, 1998, 132 : 261 - 305
  • [38] Higher Bott-Chern forms and Beilinson's regulator
    Burgos, JI
    Wang, S
    INVENTIONES MATHEMATICAE, 1998, 132 (02) : 261 - 305
  • [39] Higher-page Bott-Chern and Aeppli cohomologies and applications
    Popovici, Dan
    Stelzig, Jonas
    Ugarte, Luis
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2021, 777 : 157 - 194
  • [40] Dolbeault and Bott-Chern formalities: Deformations and 88-lemma
    Sferruzza, Tommaso
    Tomassini, Adriano
    JOURNAL OF GEOMETRY AND PHYSICS, 2022, 175