Cognitive Effort Drives Workspace Configuration of Human Brain Functional Networks

被引:295
|
作者
Kitzbichler, Manfred G.
Henson, Richard N. A. [2 ]
Smith, Marie L. [2 ]
Nathan, Pradeep J. [3 ]
Bullmore, Edward T. [1 ,3 ]
机构
[1] Univ Cambridge, Dept Psychiat, Behav & Clin Neurosci Inst, Cambridge CB2 0SZ, England
[2] MRC, Cognit & Brain Sci Unit, Cambridge CB2 7EF, England
[3] GlaxoSmithKline, Addenbrookes Ctr Clin Invest, Clin Unit Cambridge, Cambridge CB2 0QQ, England
来源
JOURNAL OF NEUROSCIENCE | 2011年 / 31卷 / 22期
基金
英国医学研究理事会; 英国惠康基金;
关键词
GRAPH-THEORETICAL ANALYSIS; CORTICAL NETWORKS; WORKING-MEMORY; MODULAR ORGANIZATION; NEURONAL AVALANCHES; SYNCHRONIZATION; DYNAMICS; REVEALS; CONSCIOUSNESS; CONNECTIVITY;
D O I
10.1523/JNEUROSCI.0440-11.2011
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Effortful cognitive performance is theoretically expected to depend on the formation of a global neuronal workspace. We tested specific predictions of workspace theory, using graph theoretical measures of network topology and physical distance of synchronization, in magnetoencephalographic data recorded from healthy adult volunteers (N = 13) during performance of a working memory task at several levels of difficulty. We found that greater cognitive effort caused emergence of a more globally efficient, less clustered, and less modular network configuration, with more long-distance synchronization between brain regions. This pattern of task-related workspace configuration was more salient in the beta-band (16-32 Hz) and gamma-band (32-63 Hz) networks, compared with both lower (alpha-band; 8-16 Hz) and higher (high gamma-band; 63-125 Hz) frequency intervals. Workspace configuration of beta-band networks was also greater in faster performing participants (with correct response latency less than the sample median) compared with slower performing participants. Processes of workspace formation and relaxation in relation to time-varying demands for cognitive effort could be visualized occurring in the course of task trials lasting < 2 s. These experimental results provide support for workspace theory in terms of complex network metrics and directly demonstrate how cognitive effort breaks modularity to make human brain functional networks transiently adopt a more efficient but less economical configuration.
引用
收藏
页码:8259 / 8270
页数:12
相关论文
共 50 条
  • [41] Effects of computerized cognitive training on functional brain networks in patients with vascular cognitive impairment and no dementia
    Li, Qiong-Ge
    Xing, Yi
    Zhu, Zu-De
    Fei, Xiao-Lu
    Tang, Yi
    Lu, Jie
    CNS NEUROSCIENCE & THERAPEUTICS, 2024, 30 (06)
  • [42] Static and dynamic functional connectivity supports the configuration of brain networks associated with creative cognition
    Patil, Abhishek Uday
    Ghate, Sejal
    Madathil, Deepa
    Tzeng, Ovid J. L.
    Huang, Hsu-Wen
    Huang, Chih-Mao
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [43] Static and dynamic functional connectivity supports the configuration of brain networks associated with creative cognition
    Abhishek Uday Patil
    Sejal Ghate
    Deepa Madathil
    Ovid J. L. Tzeng
    Hsu-Wen Huang
    Chih-Mao Huang
    Scientific Reports, 11
  • [44] Common variants contribute to intrinsic human brain functional networks
    Bingxin Zhao
    Tengfei Li
    Stephen M. Smith
    Di Xiong
    Xifeng Wang
    Yue Yang
    Tianyou Luo
    Ziliang Zhu
    Yue Shan
    Nana Matoba
    Quan Sun
    Yuchen Yang
    Mads E. Hauberg
    Jaroslav Bendl
    John F. Fullard
    Panagiotis Roussos
    Weili Lin
    Yun Li
    Jason L. Stein
    Hongtu Zhu
    Nature Genetics, 2022, 54 : 508 - 517
  • [45] Trait-like variants in human functional brain networks
    Seitzman, Benjamin A.
    Gratton, Caterina
    Laumann, Timothy O.
    Gordon, Evan M.
    Adeyemo, Babatunde
    Dworetsky, Ally
    Kraus, Brian T.
    Gilmore, Adrian W.
    Berg, Jeffrey J.
    Ortega, Mario
    Nguyen, Annie
    Greene, Deanna J.
    McDermott, Kathleen B.
    Nelson, Steven M.
    Lessov-Schlaggar, Christina N.
    Schlaggar, Bradley L.
    Dosenbach, Nico U. F.
    Petersen, Steven E.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (45) : 22851 - 22861
  • [46] Dynamic reconfiguration of human brain functional networks through neurofeedback
    Haller, Sven
    Kopel, Rotem
    Jhooti, Permi
    Haas, Tanja
    Scharnowski, Frank
    Lovblad, Karl-Olof
    Scheffler, Klaus
    Van De Ville, Dimitri
    NEUROIMAGE, 2013, 81 : 243 - 252
  • [47] Identifying Topological Motif Patterns of Human Brain Functional Networks
    Wei, Yongbin
    Liao, Xuhong
    Yan, Chaogan
    He, Yong
    Xia, Mingrui
    HUMAN BRAIN MAPPING, 2017, 38 (05) : 2734 - 2750
  • [48] Optimal configuration determination in Cognitive Autonomous Networks
    Banerjee, Anubhab
    Mwanje, Stephen S.
    Carle, Georg
    2021 IFIP/IEEE INTERNATIONAL SYMPOSIUM ON INTEGRATED NETWORK MANAGEMENT (IM 2021), 2021, : 494 - 500
  • [49] Functional reorganization of brain networks across the human menstrual cycle
    Pritschet, Laura
    Santander, Tyler
    Taylor, Caitlin M.
    Layher, Evan
    Yu, Shuying
    Miller, Michael B.
    Grafton, Scott T.
    Jacobs, Emily G.
    NEUROIMAGE, 2020, 220
  • [50] Common variants contribute to intrinsic human brain functional networks
    Zhao, Bingxin
    Li, Tengfei
    Smith, Stephen M.
    Xiong, Di
    Wang, Xifeng
    Yang, Yue
    Luo, Tianyou
    Zhu, Ziliang
    Shan, Yue
    Matoba, Nana
    Sun, Quan
    Yang, Yuchen
    Hauberg, Mads E.
    Bendl, Jaroslav
    Fullard, John F.
    Roussos, Panagiotis
    Lin, Weili
    Li, Yun
    Stein, Jason L.
    Zhu, Hongtu
    NATURE GENETICS, 2022, 54 (04) : 508 - +