On the isomorphic classification of C(K, X) spaces

被引:2
|
作者
Galego, Eloi Medina [1 ]
Zahn, Mauricio [2 ]
机构
[1] Univ Sao Paulo, Dept Math, IME, Sao Paulo, Brazil
[2] Univ Fed Pelotas, Dept Math & Stat, IFM, Pelotas, RS, Brazil
关键词
Bessaga-Pelczynski and Milutin's theorems on separable C(K) spaces; Isomorphic classifications of C(K; X); spaces; omega(1)-quotient of Banach spaces;
D O I
10.1016/j.jmaa.2015.05.080
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We provide isomorphic classifications of some C(K, X) spaces, the Banach spaces of all continuous X-valued functions defined on infinite compact metric spaces K, equipped with the suprernum norm. We first introduce the concept of w(1)-quotient of Banach spaces X. Thus, we prove that if X has some w(1)-quotient which is uniformly convex, then for all K-1 and K-2 the following statements are equivalent: (a) C(K-1, X) is isomorphic to C(K-2, X). (b) C(K-1) is isomorphic to C(K-2). This allows us to classify, up to an isomorphism, some C(K,Y (1) circle plus l(p) (Gamma)) spaces, 1 < p <= infinity, and certain C(S) spaces involving large compact Hausdorff spaces S. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:622 / 632
页数:11
相关论文
共 50 条