Type, cotype and generalized Rademacher functions

被引:3
|
作者
Botelho, G [1 ]
机构
[1] Univ Fed Uberlandia, Dept Matemat, BR-38400902 Uberlandia, MG, Brazil
关键词
D O I
10.1216/rmjm/1181071713
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main goal of this paper is to show that the traditional Rademacher functions can be replaced, up to a change of constants, by the generalized Rademacher functions in the definitions of type and cotype in complex Banach spaces. It is also shown that there are standard type Kahane inequalities for the generalized Rademacher functions. As an application we prove the continuity of the tensor product of certain multilinear mappings and homogeneous polynomials.
引用
收藏
页码:1227 / 1250
页数:24
相关论文
共 50 条
  • [21] Type and cotype of operator spaces
    Lee, Hun Hee
    STUDIA MATHEMATICA, 2008, 185 (03) : 219 - 247
  • [22] ON THE DUALITY BETWEEN TYPE AND COTYPE
    PISIER, G
    LECTURE NOTES IN MATHEMATICS, 1982, 939 : 131 - 144
  • [23] FUNCTIONS REPRESENTED BY RADEMACHER SERIES
    MCLAUGHLIN, JR
    PACIFIC JOURNAL OF MATHEMATICS, 1968, 27 (02) : 373 - +
  • [24] SOME ESTIMATES FOR TYPE AND COTYPE CONSTANTS
    KONIG, H
    TZAFRIRI, L
    MATHEMATISCHE ANNALEN, 1981, 256 (01) : 85 - 94
  • [25] On a generalized Erdos-Rademacher problem
    Liu, Xizhi
    Mubayi, Dhruv
    JOURNAL OF GRAPH THEORY, 2022, 100 (01) : 101 - 126
  • [26] Generalized Relative Type and Generalized Weak Type of Entire Functions
    Datta, Sanjib Kumar
    Biswas, Tanmay
    Dutta, Debasmita
    JOURNAL OF COMPLEX ANALYSIS, 2016,
  • [27] Order, type and cotype of growth for p-adic entire functions: A survey with additional properties
    Boussaf K.
    Boutabaa A.
    Escassut A.
    P-Adic Numbers, Ultrametric Analysis, and Applications, 2016, 8 (4) : 280 - 297
  • [28] On a generalized Hankel type convolution of generalized functions
    S. P. Malgonde
    G. S. Gaikawad
    Proceedings of the Indian Academy of Sciences - Mathematical Sciences, 2001, 111 : 471 - 487
  • [29] On a generalized Hankel type convolution of generalized functions
    Malgonde, SP
    Gaikawad, GS
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2001, 111 (04): : 471 - 487
  • [30] TYPE AND COTYPE IN LORENTZ LPQ SPACES
    CREEKMORE, J
    PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1981, 84 (02): : 145 - 152