Studying atomic structures by aberration-corrected transmission electron microscopy

被引:278
|
作者
Urban, Knut W. [1 ,2 ]
机构
[1] Forschungszentrum Julich, Helmholtz Res Ctr, Inst Solid State Res, D-52425 Julich, Germany
[2] Forschungszentrum Julich, Helmholtz Res Ctr, Ernst Ruska Ctr Microscopy & Spect Electrons, D-52425 Julich, Germany
关键词
D O I
10.1126/science.1152800
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Seventy- five years after its invention, transmission electron microscopy has taken a great step forward with the introduction of aberration- corrected electron optics. An entirely new generation of instruments enables studies in condensed- matter physics and materials science to be performed at atomic- scale resolution. These new possibilities are meeting the growing demand of nanosciences and nanotechnology for the atomic- scale characterization of materials, nanosynthesized products and devices, and the validation of expected functions. Equipped with electron- energy filters and electron- energy- loss spectrometers, the new instruments allow studies not only of structure but also of elemental composition and chemical bonding. The energy resolution is about 100 milli- electron volts, and the accuracy of spatial measurements has reached a few picometers. However, understanding the results is generally not straightforward and only possible with extensive quantum- mechanical computer calculations.
引用
收藏
页码:506 / 510
页数:5
相关论文
共 50 条
  • [41] Seeing inside materials by aberration-corrected electron microscopy
    Pennycook, S. J.
    van Benthem, K.
    Marinopoulos, A. G.
    Oh, S-H.
    Molina, S. I.
    Borisevich, A. Y.
    Luo, W.
    Pantelides, S. T.
    INTERNATIONAL JOURNAL OF NANOTECHNOLOGY, 2011, 8 (10-12) : 935 - 947
  • [42] Materials advances through aberration-corrected electron microscopy
    Pennycook, SJ
    Varela, M
    Hetherington, CJD
    Kirkland, AI
    MRS BULLETIN, 2006, 31 (01) : 36 - 43
  • [43] Exploring aberration-corrected electron microscopy for compound semiconductors
    Smith, David J.
    Aoki, Toshihiro
    Mardinly, John
    Zhou, Lin
    McCartney, Martha R.
    MICROSCOPY, 2013, 62 : S65 - S73
  • [44] Aberration-corrected Electron Microscopy Imaging for Nanoelectronics Applications
    Kisielowski, C.
    Specht, P.
    Alloyeau, D.
    Erni, R.
    Ramasse, Q.
    FRONTIERS OF CHARACTERIZATION AND METROLOGY FOR NANOELECTRONICS: 2009, 2009, 1173 : 231 - +
  • [45] Advances in Aberration-Corrected Scanning Transmission Electron Microscopy and Electron Energy-Loss Spectroscopy
    Krivanek, Ondrej L.
    Dellby, Niklas
    Keyse, Robert J.
    Murfitt, Matthew F.
    Own, Christopher S.
    Szilagyi, Zoltan S.
    ADVANCES IN IMAGING AND ELECTRON PHYSICS, VOL 153, 2008, 153 : 121 - +
  • [46] Imaging modes for scanning confocal electron microscopy in a double aberration-corrected transmission electron microscope
    Nellist, P. D.
    Cosgriff, E. C.
    Behan, G.
    Kirkland, A. I.
    MICROSCOPY AND MICROANALYSIS, 2008, 14 (01) : 82 - 88
  • [47] Progress in aberration-corrected high-resolution transmission electron microscopy using hardware aberration correction
    Lentzen, Markus
    MICROSCOPY AND MICROANALYSIS, 2006, 12 (03) : 191 - 205
  • [48] Energy Filtered Scanning Confocal Electron Microscopy in a Double Aberration-Corrected Transmission Electron Microscope
    Wang, P.
    Behan, G.
    Kirkland, A. I.
    Nellist, P. D.
    MICROSCOPY AND MICROANALYSIS, 2009, 15 : 42 - 43
  • [49] Robotic fabrication of high-quality lamellae for aberration-corrected transmission electron microscopy
    Tsurusawa, Hideyo
    Nakanishi, Nobuto
    Kawano, Kayoko
    Chen, Yiqiang
    Dutka, Mikhail
    Van Leer, Brandon
    Mizoguchi, Teruyasu
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [50] ABERRATION CORRECTED TRANSMISSION ELECTRON MICROSCOPY
    Walther, Thomas
    Dunin-Borkowski, Rafal E.
    Rouviere, Jean-Luc
    Stach, Eric A.
    JOURNAL OF MATERIALS RESEARCH, 2017, 32 (05) : 911 - 911