Cost Effective Greenhouse Gas Reductions in the Steel Industry from an Organic Rankine Cycle

被引:10
|
作者
Walsh, Conor [1 ]
Thornley, Patricia [1 ]
机构
[1] Univ Manchester, Tyndall Ctr Climate Change Res, Manchester M13 9PL, Lancs, England
关键词
D O I
10.3303/CET1125151
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Large quantities of low grade heat (LGH) are generated within many process industries, and the recovery of LGH is a potentially significant means of improving process efficiency, but it is often difficult to find an appropriate internal heat load. One alternative is to use appropriate technologies to convert the low grade heat to electricity for use on site. This paper describes the environmental and techno-economic evaluation of a case study examining the potential application of an Organic Rankine Cycle (ORC) to generate electricity from LGH from the stacks of a coke oven used in steel production. 21 MW of LGH was available for recovery at the plant and resource accounting and lifecycle analysis methods were used to evaluate the environmental and economic benefits of the operation of an ORC. The results showed that between 1 and 3% of the CO2 emitted directly through the production of coke would be offset by installation of an ORC, with lifecycle environmental impacts of coke production reduced by less than 1 %, although this was sufficient to offset over 10,000 t CO2 annually. However, the amount of electricity generated was sufficient to replace all currently imported electricity and economic analysis indicated a relatively attractive discounted payback period of between 3 and 6 years, suggesting this may be a commercially viable option, which could present a relatively cost effective method of achieving greenhouse gas savings in the process industries.
引用
收藏
页码:905 / 910
页数:6
相关论文
共 50 条
  • [41] Thermodynamic and economic evaluation of the organic Rankine cycle (ORC) and two-stage series organic Rankine cycle (TSORC) for flue gas heat recovery
    Li, Tailu
    Meng, Nan
    Liu, Jian
    Zhu, Jialing
    Kong, Xiangfei
    ENERGY CONVERSION AND MANAGEMENT, 2019, 183 : 816 - 829
  • [42] Economic assessment of greenhouse gas reduction through low-grade waste heat recovery using organic Rankine cycle (ORC)
    Muhammad Imran
    Byung-Sik Park
    Hyouck-Ju Kim
    Dong-Hyun Lee
    Muhammad Usman
    Journal of Mechanical Science and Technology, 2015, 29 : 835 - 843
  • [43] Economic assessment of greenhouse gas reduction through low-grade waste heat recovery using organic Rankine cycle (ORC)
    Imran, Muhammad
    Park, Byung-Sik
    Kim, Hyouck-Ju
    Lee, Dong-Hyun
    Usman, Muhammad
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2015, 29 (02) : 835 - 843
  • [44] Exergo-Economic and Parametric Analysis of Waste Heat Recovery from Taji Gas Turbines Power Plant Using Rankine Cycle and Organic Rankine Cycle
    Kareem, Alaa Fadhil
    Akroot, Abdulrazzak
    Wahhab, Hasanain Abdul A.
    Talal, Wadah
    Ghazal, Rabeea M.
    Alfaris, Ali
    SUSTAINABILITY, 2023, 15 (12)
  • [46] Waste heat recovery in iron and steel industry using organic Rankine cycles
    Ja'fari, Mohammad
    Khan, Muhammad Imran
    Al-Ghamdi, Sami G.
    Jaworski, Artur J.
    Asfand, Faisal
    CHEMICAL ENGINEERING JOURNAL, 2023, 477
  • [47] FLEXIBLE COMBINED CYCLE GAS TURBINE POWER PLANT UTILISING ORGANIC RANKINE CYCLE TECHNOLOGY
    Welch, Michael
    Rossetti, Nicola
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2016, VOL 3, 2016,
  • [48] Energy and exergy analysis and optimization of a gas turbine cycle coupled by a bottoming organic Rankine cycle
    Ahmadi, Behrooz
    Golneshan, Ali Akbar
    Arasteh, Hossein
    Karimipour, Arash
    Bach, Quang-Vu
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2020, 141 (01) : 495 - 510
  • [49] COMBINED SOLAR THERMAL GAS TURBINE AND ORGANIC RANKINE CYCLE APPLICATION FOR IMPROVED CYCLE EFFICIENCIES
    Kusterer, Karsten
    Braun, Rene
    Koellen, Linda
    Sugimoto, Takao
    Tanimura, Kazuhiko
    Bohn, Dieter
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2013, VOL 4, 2013,
  • [50] Determination of optimum organic Rankine cycle parameters and configuration for utilizing waste heat in the steel industry as a driver of receive osmosis system
    Jaafari, Reza
    Rahimi, A. B.
    ENERGY REPORTS, 2021, 7 : 4146 - 4171