The solutions with recurrence property for stochastic linearly coupled complex cubic-quintic Ginzburg-Landau equations

被引:2
|
作者
Gao, Peng [1 ,2 ]
机构
[1] Northeast Normal Univ, Sch Math & Stat, Changchun 130024, Jilin, Peoples R China
[2] Northeast Normal Univ, Ctr Math & Interdisciplinary Sci, Changchun 130024, Jilin, Peoples R China
关键词
Stochastic linearly coupled complex cubic-quintic Ginzburg-Landau equation; bounded solutions; stationary solutions; periodic solutions; almost periodic solutions; almost automorphic solutions; BIRTH-DEATH PROCESSES; PASSIVE-MODE LOCKING; AUTOMORPHIC SOLUTIONS; DIFFERENTIAL-EQUATIONS; PERIODIC-SOLUTIONS; DRIVEN; DYNAMICS; PSEUDO;
D O I
10.1142/S0219493719500059
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Stochastic periodic type solution is a powerful tool for studying qualitative analysis of stochastic dynamical systems. In this paper, we will establish the bounded solutions, stationary solutions, periodic solutions, almost periodic solutions, almost automorphic solutions for stochastic linearly coupled complex cubic-quintic Ginzburg Landau equations under suitable conditions. The main novelty of this paper is dealing with cubic nonlinear terms and the quintic nonlinear terms which are not Lipschitz. We overcome this difficulty by the semigroup approach, stochastic analysis techniques, energy estimate method and refined inequality technique.
引用
收藏
页数:42
相关论文
共 50 条
  • [21] Bifurcation to traveling waves in the cubic-quintic complex Ginzburg-Landau equation
    Park, Jungho
    Strzelecki, Philip
    ANALYSIS AND APPLICATIONS, 2015, 13 (04) : 395 - 411
  • [22] Dissipative solitons of the discrete complex cubic-quintic Ginzburg-Landau equation
    Maruno, K
    Ankiewicz, A
    Akhmediev, N
    PHYSICS LETTERS A, 2005, 347 (4-6) : 231 - 240
  • [23] Homoclinic orbit for the cubic-quintic Ginzburg-Landau equation
    Xu, PC
    Chang, QS
    CHAOS SOLITONS & FRACTALS, 1999, 10 (07) : 1161 - 1170
  • [24] On a cubic-quintic Ginzburg-Landau equation with global coupling
    Wei, JC
    Winter, M
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (06) : 1787 - 1796
  • [25] Influence of the higher-order effects on the solutions of the complex cubic-quintic Ginzburg-Landau equation
    Uzunov, Ivan M.
    Nikolov, Svetoslav G.
    JOURNAL OF MODERN OPTICS, 2020, 67 (07) : 606 - 618
  • [26] Exact solutions of discrete complex cubic-quintic Ginzburg-Landau equation with non-local quintic term
    Dai, Chaoqing
    Zhang, Jiefang
    OPTICS COMMUNICATIONS, 2006, 263 (02) : 309 - 316
  • [27] Exact solutions to the fractional complex Ginzburg-Landau equation with cubic-quintic and Kerr law nonlinearities
    Yang, Liu
    Gao, Ben
    PHYSICA SCRIPTA, 2024, 99 (05)
  • [28] Modulational instability and exact solutions of the discrete cubic-quintic Ginzburg-Landau equation
    Murali, R.
    Porsezian, K.
    Kofane, T. C.
    Mohamadou, A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (16)
  • [29] Theoretical analysis of solutions of cubic-quintic Ginzburg-Landau equation with gain saturation
    Shtyrina, Olga, V
    Yarutkina, Irina A.
    Skidin, Anton S.
    Podivilov, Evgeny, V
    Fedorukt, Mikhail P.
    OPTICS EXPRESS, 2019, 27 (05) : 6711 - 6718
  • [30] Exact Solutions for 2D cubic-quintic Ginzburg-Landau equation
    Shi, Ye-qiong
    Dai, Zheng-de
    Han, Song
    ISND 2007: PROCEEDINGS OF THE 2007 INTERNATIONAL SYMPOSIUM ON NONLINEAR DYNAMICS, PTS 1-4, 2008, 96