A NOTE ON THE REPRESENTATION OF CLIFFORD ALGEBRAS

被引:5
|
作者
Gu, Ying-Qiu [1 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
关键词
Clifford algebra; connection operator; gamma matrix; hypercomplex number; multi-inner product; Pauli matrix; torsion; TRANSPOSITION ANTI-INVOLUTION; GEOMETRY; SPINORS;
D O I
10.7546/jgsp-62-2021-29-52
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this note we construct explicit complex and real faithful matrix representations of the Clifford algebras Cl-p,Cl-q. The representation is based on Pauli matrices and has an elegant structure similar to the fractal geometry. In the cases p + q = 4m, the representation is unique in equivalent sense, and the 1 + 3 dimensional space-time corresponds to the simplest and best case. Besides, the relation between the curvilinear coordinate frame and the local orthonormal basis in the curved space-time is discussed in detail, the covariant derivatives of the spinor and tensors are derived, and the connection of the orthogonal basis in tangent space is calculated. These results are helpful for both theoretical analysis and practical calculation. The basis matrices are the faithful representation of Clifford algebras in any p + q dimensional Minkowski space-time or Riemann space, and the Clifford calculus converts the complicated relations in geometry and physics into simple and concise algebraic operations. Clifford numbers over any number field F expressed by this matrix basis form a well-defined 2(n) dimensional hypercomplex number system. Therefore, we can expect that Clifford algebras will complete a large synthesis in science.
引用
收藏
页码:29 / 52
页数:24
相关论文
共 50 条
  • [21] NOTE ON A SUBDIRECT REPRESENTATION OF UNIVERSAL ALGEBRAS
    WENZEL, GH
    ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1967, 18 (3-4): : 329 - &
  • [22] Clifford bundles and clifford algebras
    Branson, T
    LECTURES ON CLIFFORD (GEOMETRIC) ALGEBRAS AND APPLICATIONS, 2004, : 157 - 188
  • [23] ON CLIFFORD ALGEBRAS
    VANDERWA.BL
    KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETESCHAPPEN-PROCEEDINGS SERIES A-MATHEMATICAL SCIENCES, 1966, 69 (02): : 78 - &
  • [24] Galilean-covariant Clifford algebras in the phase-space representation
    Vianna, JDM
    Fernandes, MCB
    Santana, AE
    FOUNDATIONS OF PHYSICS, 2005, 35 (01) : 109 - 129
  • [25] CLIFFORD ALGEBRAS AND EXTERIOR ALGEBRAS
    REVOY, P
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1973, 277 (14): : 655 - 657
  • [26] Algebras like Clifford algebras
    Eastwood, M
    CLIFFORD ALGEBRAS: APPLICATIONS TO MATHEMATICS, PHYSICS, AND ENGINEERING, 2004, 34 : 265 - 278
  • [27] Galilean-Covariant Clifford Algebras in the Phase-Space Representation
    J. D. M. Vianna
    M. C. B. Fernandes
    A. E. Santana
    Foundations of Physics, 2005, 35 : 109 - 129
  • [28] Q-MATRIX REPRESENTATION OF DIRAC-CLIFFORD AND CAYLEY ALGEBRAS
    PETRI, J
    BULLETIN DE LA CLASSE DES SCIENCES ACADEMIE ROYALE DE BELGIQUE, 1979, 65 (1-2): : 6 - 15
  • [29] CLIFFORD ALGEBRAS AND EXTERNAL ALGEBRAS
    REVOY, P
    JOURNAL OF ALGEBRA, 1977, 46 (01) : 268 - 277
  • [30] SUPERCONFORMAL ALGEBRAS AND CLIFFORD ALGEBRAS
    HASIEWICZ, Z
    THIELEMANS, K
    TROOST, W
    JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (03) : 744 - 756