A Defect-Correction Method for Time-Dependent Viscoelastic Fluid Flow Based on SUPG Formulation

被引:6
|
作者
Zhang, Yunzhang [3 ,4 ]
Hou, Yanren [3 ]
Yang, Ganshan [1 ,2 ]
机构
[1] Yunnan Normal Univ, Inst Math Sci, Kunming 650092, Peoples R China
[2] Yunnan Nationalities Univ, Dept Math, Kunming 650031, Peoples R China
[3] Xi An Jiao Tong Univ, Sch Sci, Xian 710049, Peoples R China
[4] Henan Univ Sci & Technol, Sch Math & Stat, Luoyang 471003, Peoples R China
基金
中国国家自然科学基金;
关键词
NAVIER-STOKES EQUATIONS; FINITE-ELEMENT APPROXIMATION; NUMERICAL-ANALYSIS; SCHEME; FEM;
D O I
10.1155/2011/689804
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A defect-correction mixed finite element method for solving the time-dependent Johnson-Segalman viscoelastic equations in two dimensions is given. In the defect step, the constitutive equation is computed with the artificially reduced Weissenberg parameter for stability, and the resulting residual is corrected in the correction step on the same grid. A streamline upwind Petrov-Galerkin (SUPG) approximation is used to stabilize the hyperbolic character of the constitutive equation for the stress. We establish a priori error estimates for the defect step and the first correction step of the defect correction method. The derived theoretical results are supported by numerical tests.
引用
收藏
页数:25
相关论文
共 50 条
  • [31] Mathematical and numerical analysis of a simplified time-dependent viscoelastic flow
    Bonito, Andrea
    Clement, Philippe
    Picasso, Marco
    NUMERISCHE MATHEMATIK, 2007, 107 (02) : 213 - 255
  • [32] Time-dependent finite element simulations of a shear-thinning viscoelastic fluid with application to blood flow
    Donev, I. G.
    Reddy, B. D.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2014, 75 (09) : 668 - 686
  • [33] Study of a finite element method for the time-dependent generalized Stokes system associated with viscoelastic flow
    Carneiro de Araujo, J. H.
    Gomes, P. D.
    Ruas, V.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (08) : 2562 - 2577
  • [34] A defect correction weak Galerkin finite element method for the Kelvin-Voigt viscoelastic fluid flow model
    Duan, Mengmeng
    Yang, Yan
    Feng, Minfu
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 451
  • [35] Time-dependent analysis of electroosmotic fluid flow in a microchannel
    V. K. Narla
    Dharmendra Tripathi
    G. P. Raja Sekhar
    Journal of Engineering Mathematics, 2019, 114 : 177 - 196
  • [36] Flow of heat conducting fluid in a time-dependent domain
    Ondřej Kreml
    Václav Mácha
    Šárka Nečasová
    Aneta Wróblewska-Kamińska
    Zeitschrift für angewandte Mathematik und Physik, 2018, 69
  • [37] Three control methods for time-dependent fluid flow
    Hinze, M
    Kunisch, K
    FLOW TURBULENCE AND COMBUSTION, 2000, 65 (3-4) : 273 - 298
  • [38] Flow of heat conducting fluid in a time-dependent domain
    Kreml, Ondrej
    Macha, Vaclav
    Necasova, Sarka
    Wroblewska-Kaminska, Aneta
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (05):
  • [39] REACTION OF THE FLUID FLOW ON TIME-DEPENDENT BOUNDARY PERTURBATION
    Marusic-Paloka, Eduard
    Pazanin, Igor
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2019, 18 (03) : 1227 - 1246
  • [40] Three Control Methods for Time-Dependent Fluid Flow
    Michael Hinze
    Karl Kunisch
    Flow, Turbulence and Combustion, 2000, 65 : 273 - 298