The Neuroscience of Implicit Learning

被引:20
|
作者
Williams, John N. [1 ]
机构
[1] Univ Cambridge, Cambridge, England
关键词
artificial grammar learning; statistical learning; sequence learning; serial reaction time task; fMRI; INFERIOR FRONTAL-CORTEX; MEDIAL TEMPORAL-LOBE; REACTION-TIME-TASK; ARTIFICIAL GRAMMAR; PARKINSONS-DISEASE; BROCAS AREA; INDIVIDUAL-DIFFERENCES; NEURAL BASIS; SENTENCE COMPREHENSION; HIPPOCAMPAL SYSTEM;
D O I
10.1111/lang.12405
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
Over the past decades, research employing artificial grammar, sequence learning, and statistical learning paradigms has flourished, not least because these methods appear to offer a window, albeit with a restricted view, on implicit learning processes underlying natural language learning. But these paradigms usually provide relatively little exposure, use meaningless stimuli, and do not even necessarily target natural language structures. So the question arises whether they engage the same brain regions as natural language. The aim of this review is to use data from brain imaging, brain stimulation, and the effects of brain damage to identify the main brain regions that show sensitivity to structural regularities in implicit learning paradigms and to consider their relationship to natural language processing and learning.
引用
收藏
页码:255 / 307
页数:53
相关论文
共 50 条
  • [21] Sarcopenia and Neuroscience: Learning to Communicate
    Clark, Brian C.
    Carson, Richard G.
    JOURNALS OF GERONTOLOGY SERIES A-BIOLOGICAL SCIENCES AND MEDICAL SCIENCES, 2021, 76 (10): : 1882 - 1890
  • [22] A deep learning framework for neuroscience
    Richards, Blake A.
    Lillicrap, Timothy P.
    Beaudoin, Philippe
    Bengio, Yoshua
    Bogacz, Rafal
    Christensen, Amelia
    Clopath, Claudia
    Costa, Rui Ponte
    de Berker, Archy
    Ganguli, Surya
    Gillon, Colleen J.
    Hafner, Danijar
    Kepecs, Adam
    Kriegeskorte, Nikolaus
    Latham, Peter
    Lindsay, Grace W.
    Miller, Kenneth D.
    Naud, Richard
    Pack, Christopher C.
    Poirazi, Panayiota
    Roelfsema, Pieter
    Sacramento, Joao
    Saxe, Andrew
    Scellier, Benjamin
    Schapiro, Anna C.
    Senn, Walter
    Wayne, Greg
    Yamins, Daniel
    Zenke, Friedemann
    Zylberberg, Joel
    Therien, Denis
    Kording, Konrad P.
    NATURE NEUROSCIENCE, 2019, 22 (11) : 1761 - 1770
  • [23] The cognitive neuroscience of category learning
    Kéri, S
    BRAIN RESEARCH REVIEWS, 2003, 43 (01) : 85 - 109
  • [24] The neuroscience of mammalian associative learning
    Fanselow, MS
    Poulos, AM
    ANNUAL REVIEW OF PSYCHOLOGY, 2005, 56 : 207 - 234
  • [25] The Interpersonal Neuroscience of Social Learning
    Pan, Yafeng
    Novembre, Giacomo
    Olsson, Andreas
    PERSPECTIVES ON PSYCHOLOGICAL SCIENCE, 2022, 17 (03) : 680 - 695
  • [26] Deep Learning and Computational Neuroscience
    Erik De Schutter
    Neuroinformatics, 2018, 16 : 1 - 2
  • [27] NEUROSCIENCE - GROWTH THROUGH LEARNING
    STRYKER, MP
    NATURE, 1995, 375 (6529) : 277 - 278
  • [28] THE COGNITIVE NEUROSCIENCE OF MOTIVATION AND LEARNING
    Daw, Nathaniel D.
    Shohamy, Daphna
    SOCIAL COGNITION, 2008, 26 (05) : 593 - 620
  • [29] Neuroscience of Education: brain and learning
    Richer, Louis
    REVUE DES SCIENCES DE L EDUCATION, 2007, 33 (02): : 521 - 522
  • [30] The cognitive neuroscience of category learning
    Gluck, Mark A.
    Poldrack, Russell A.
    Keri, Szabolcs
    NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS, 2008, 32 (02): : 193 - 196