Smooth representations of unit groups of split basic algebras over non-Archimedean local fields

被引:0
|
作者
Andre, Carlos A. M. [1 ]
Dias, Joao [1 ]
机构
[1] Univ Lisbon, Fac Ciencias, Dept Matemat, Grp Estruturas Lineares & Combinatorias, Edificio C6,Piso 2, P-1749016 Lisbon, Portugal
关键词
CHARACTERS;
D O I
10.1515/jgth-2019-0084
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider smooth representations of the unit group G = A(x) of a finite-dimensional split basic algebra A. over a non-Archimedean local field. In particular, we prove a version of Gutkin's conjecture, namely, we prove that every irreducible smooth representation of G is compactly induced by a one-dimensional representation of the unit group of some subalgebra of A. We also discuss admissibility and unitarisability of smooth representations of G.
引用
收藏
页码:1069 / 1097
页数:29
相关论文
共 50 条