Invariant random subgroups over non-Archimedean local fields

被引:0
|
作者
Tsachik Gelander
Arie Levit
机构
[1] Weizmann Institute of Science,
[2] Yale University,undefined
来源
Mathematische Annalen | 2018年 / 372卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a higher rank semisimple linear algebraic group over a non-Archimedean local field. The simplicial complexes corresponding to any sequence of pairwise non-conjugate irreducible lattices in G are Benjamini–Schramm convergent to the Bruhat–Tits building. Convergence of the relative Plancherel measures and normalized Betti numbers follows. This extends the work (Abert et al. in Ann Math 185(3):711–790, 2017) from real Lie groups to linear groups over arbitrary local fields. Along the way, various results concerning Invariant Random Subgroups and in particular a variant of the classical Borel density theorem are also extended.
引用
收藏
页码:1503 / 1544
页数:41
相关论文
共 50 条