Silicon-based microphotonics for biosensing applications

被引:3
|
作者
Janz, S. [1 ]
Densmore, A. [1 ]
Xu, D. -X. [1 ]
Waldron, P. [1 ]
Delage, A. [1 ]
Cheben, P. [1 ]
Lapointe, J. [1 ]
Schmid, J. H. [1 ]
机构
[1] Natl Res Council Canada, Inst Microstruct Sci, Ottawa, ON K1J 6B1, Canada
关键词
evanescent field; biosensors; waveguides; silicon-on-insulator; photonic wires; silicon photonics;
D O I
10.1007/978-1-4020-6952-9_7
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper reviews theory and experiments on silicon photonic wire waveguide evanescent field (PWEF) biosensors. Theoretical considerations and supporting calculations show that sensor response increases both with increasing core-cladding refractive index contrast, and with decreasing waveguide core thickness until a maximum sensor response is achieved. As a result, appropriately designed Si waveguide sensors can have the largest response to superstrate refractive index shifts, and also to surface molecular adsorption, of any commonly available waveguide system. Measurements of Si waveguide sensor response to fluid index change and biotin-avidin binding reactions confirm the predictions of theory.
引用
收藏
页码:167 / 194
页数:28
相关论文
共 50 条
  • [21] Some silicon-based heterostructures for optical applications
    M. Willander
    Q. X. Zhao
    O. Nur
    Q. -H. Hu
    Journal of Electronic Materials, 2005, 34 : 515 - 521
  • [22] A silicon-based microreaction system for analytical applications
    Woias, P
    Hauser, K
    Yacoub-George, E
    Hillerich, B
    MICROREACTION TECHNOLOGY: INDUSTRIAL PROSPECTS, 2000, : 654 - 663
  • [23] Silicon-Based Sensors for Biomedical Applications: A Review
    Xu, Yongzhao
    Hu, Xiduo
    Kundu, Sudip
    Nag, Anindya
    Afsarimanesh, Nasrin
    Sapra, Samta
    Mukhopadhyay, Subhas Chandra
    Han, Tao
    SENSORS, 2019, 19 (13)
  • [24] Advances in silicon photonic devices for silicon-based optoelectronic applications
    Liu, Ansheng
    Paniccia, Mario
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2006, 35 (02): : 223 - 228
  • [25] FDTD simulation of amorphous silicon waveguides for microphotonics applications
    Fantoni, A.
    Lourenco, P.
    Pinho, P.
    Vieira, M.
    INTEGRATED OPTICS: PHYSICS AND SIMULATIONS III, 2017, 10242
  • [26] Monolithic Silicon Microphotonics
    Kimerling, LC
    Dal Negro, L
    Saini, S
    Yi, Y
    Ahn, D
    Akiyama, S
    Cannon, D
    Liu, J
    Sandland, JG
    Sparacin, D
    Michel, J
    Wada, K
    Watts, MR
    SILICON PHOTONICS, 2004, 94 : 89 - 119
  • [27] Microphotonics devices based on silicon microfabrication technology
    Tsuchizawa, T
    Yamada, K
    Fukuda, H
    Watanabe, T
    Takahashi, J
    Takahashi, M
    Shoji, T
    Tamechika, E
    Itabashi, S
    Morita, H
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2005, 11 (01) : 232 - 240
  • [28] Microfabrication of silicon-based nanoporous particulates for medical applications
    Cohen, MH
    Melnik, K
    Boiarski, AA
    Ferrari, M
    Martin, FJ
    BIOMEDICAL MICRODEVICES, 2003, 5 (03) : 253 - 259
  • [29] Silicon-based group IV heterostructures for optoelectronic applications
    Sorel, RA
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 1996, 14 (03): : 913 - 918
  • [30] Silicon-based difluoromethylating reagents: Preparation and applications.
    Prakash, GKS
    Yudin, AK
    Deffieux, D
    Olah, GA
    Loker, DP
    Loker, BL
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1996, 211 : 295 - ORGN