Artificial intelligence for stepwise diagnosis and monitoring of COVID-19

被引:19
|
作者
Liang, Hengrui [1 ,2 ]
Guo, Yuchen [3 ,4 ]
Chen, Xiangru [5 ]
Ang, Keng-Leong [2 ,6 ]
He, Yuwei [4 ,7 ]
Jiang, Na [8 ]
Du, Qiang [5 ]
Zeng, Qingsi [1 ,9 ]
Lu, Ligong [10 ]
Gao, Zebin [5 ]
Li, Linduo [11 ]
Li, Quanzheng [12 ]
Nie, Fangxing [5 ]
Ding, Guiguang [3 ,4 ,7 ]
Huang, Gao [5 ,7 ]
Chen, Ailan [1 ,13 ]
Li, Yimin [1 ,14 ]
Guan, Weijie [1 ]
Sang, Ling [1 ,14 ]
Xu, Yuanda [1 ,14 ]
Chen, Huai [1 ,9 ]
Chen, Zisheng [1 ]
Li, Shiyue [1 ]
Zhang, Nuofu [1 ]
Chen, Ying [1 ]
Huang, Danxia [1 ]
Li, Run [1 ]
Li, Jianfu [1 ,2 ]
Cheng, Bo [1 ,2 ]
Zhao, Yi [1 ,2 ]
Li, Caichen [1 ,2 ]
Xiong, Shan [1 ,2 ]
Wang, Runchen [1 ,2 ]
Liu, Jun [1 ,2 ]
Wang, Wei [1 ,2 ]
Huang, Jun [1 ,2 ]
Cui, Fei [1 ,2 ]
Xu, Tao [15 ]
Lure, Fleming Y. M. [16 ]
Zhan, Meixiao [10 ]
Huang, Yuanyi [17 ]
Yang, Qiang [18 ]
Dai, Qionghai [3 ,4 ]
Liang, Wenhua [1 ,2 ]
He, Jianxing [1 ,2 ,19 ]
Zhong, Nanshan [1 ]
机构
[1] Guangzhou Med Univ, Affiliated Hosp 1, Natl Clin Res Ctr Resp Dis, Guangzhou 510120, Peoples R China
[2] Guangzhou Med Univ, Affiliated Hosp 1, Dept Thorac Surg, Guangzhou 510120, Peoples R China
[3] Tsinghua Univ, Inst Brain & Cognit Sci, Beijing 100084, Peoples R China
[4] Tsinghua Univ, Beijing Natl Res Ctr Informat Sci & Technol BNRis, Beijing 100084, Peoples R China
[5] Beijing XiaoBaiShiJi Network Tech Co Ltd, Beijing 100084, Peoples R China
[6] Glenfield Hosp, Dept Thorac Surg, Leicester LE3 9QP, Leics, England
[7] Tsinghua Univ, Sch Software, Beijing 100084, Peoples R China
[8] Wuhan Hankou Hosp, Dept Gastroenterol, Wuhan 430000, Peoples R China
[9] Guangzhou Med Univ, Affiliated Hosp 1, Dept Radiol, Guangzhou 510120, Peoples R China
[10] Jinan Univ, Zhuhai Hosp, Zhuhai Peoples Hosp, Zhuhai Precis Med Ctr,Zhuhai Intervent Med Ctr, Zhuhai 519000, Peoples R China
[11] Northeastern Univ, Coll Engn, 30 Huntington Ave, Boston, MA 02115 USA
[12] Massachusetts Gen Hosp, Dept Radiol, White 427 55 Fruit St, Boston, MA 02114 USA
[13] Guangzhou Med Univ, Affiliated Hosp 1, Dept Cardiol, Guangzhou 510120, Peoples R China
[14] Guangzhou Med Univ, Affiliated Hosp 1, Dept Intens Care Unit, Guangzhou 510120, Peoples R China
[15] Tsinghua Univ, Dept Mech Engn, Biomfg Ctr, Beijing 100084, Peoples R China
[16] Univ Texas El Paso, Coll Engn, El Paso, TX 79968 USA
[17] Yangtze Univ, Clin Med Coll 2, Dept Radiol, Jingzhou Cent Hosp, Jingzhou, Hubei, Peoples R China
[18] Hong Kong Univ Sci & Technol & WeBank, Hong Kong, Peoples R China
[19] South China Med Univ, Guangzhou 510000, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Coronavirus disease 2019; AI (artificial intelligence); Computer-assisted diagnosis; CLASSIFICATION; NETWORK;
D O I
10.1007/s00330-021-08334-6
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background Main challenges for COVID-19 include the lack of a rapid diagnostic test, a suitable tool to monitor and predict a patient's clinical course and an efficient way for data sharing among multicenters. We thus developed a novel artificial intelligence system based on deep learning (DL) and federated learning (FL) for the diagnosis, monitoring, and prediction of a patient's clinical course. Methods CT imaging derived from 6 different multicenter cohorts were used for stepwise diagnostic algorithm to diagnose COVID-19, with or without clinical data. Patients with more than 3 consecutive CT images were trained for the monitoring algorithm. FL has been applied for decentralized refinement of independently built DL models. Results A total of 1,552,988 CT slices from 4804 patients were used. The model can diagnose COVID-19 based on CT alone with the AUC being 0.98 (95% CI 0.97-0.99), and outperforms the radiologist's assessment. We have also successfully tested the incorporation of the DL diagnostic model with the FL framework. Its auto-segmentation analyses co-related well with those by radiologists and achieved a high Dice's coefficient of 0.77. It can produce a predictive curve of a patient's clinical course if serial CT assessments are available. Interpretation The system has high consistency in diagnosing COVID-19 based on CT, with or without clinical data. Alternatively, it can be implemented on a FL platform, which would potentially encourage the data sharing in the future. It also can produce an objective predictive curve of a patient's clinical course for visualization.
引用
收藏
页码:2235 / 2245
页数:11
相关论文
共 50 条
  • [1] Artificial intelligence for stepwise diagnosis and monitoring of COVID-19
    Hengrui Liang
    Yuchen Guo
    Xiangru Chen
    Keng-Leong Ang
    Yuwei He
    Na Jiang
    Qiang Du
    Qingsi Zeng
    Ligong Lu
    Zebin Gao
    Linduo Li
    Quanzheng Li
    Fangxing Nie
    Guiguang Ding
    Gao Huang
    Ailan Chen
    Yimin Li
    Weijie Guan
    Ling Sang
    Yuanda Xu
    Huai Chen
    Zisheng Chen
    Shiyue Li
    Nuofu Zhang
    Ying Chen
    Danxia Huang
    Run Li
    Jianfu Li
    Bo Cheng
    Yi Zhao
    Caichen Li
    Shan Xiong
    Runchen Wang
    Jun Liu
    Wei Wang
    Jun Huang
    Fei Cui
    Tao Xu
    Fleming Y. M. Lure
    Meixiao Zhan
    Yuanyi Huang
    Qiang Yang
    Qionghai Dai
    Wenhua Liang
    Jianxing He
    Nanshan Zhong
    [J]. European Radiology, 2022, 32 : 2235 - 2245
  • [2] Application of Artificial Intelligence in COVID-19 Diagnosis and Therapeutics
    Asada, Ken
    Komatsu, Masaaki
    Shimoyama, Ryo
    Takasawa, Ken
    Shinkai, Norio
    Sakai, Akira
    Bolatkan, Amina
    Yamada, Masayoshi
    Takahashi, Satoshi
    Machino, Hidenori
    Kobayashi, Kazuma
    Kaneko, Syuzo
    Hamamoto, Ryuji
    [J]. JOURNAL OF PERSONALIZED MEDICINE, 2021, 11 (09):
  • [3] Artificial intelligence in the diagnosis of COVID-19: challenges and perspectives
    Huang, Shigao
    Yang, Jie
    Fong, Simon
    Zhao, Qi
    [J]. INTERNATIONAL JOURNAL OF BIOLOGICAL SCIENCES, 2021, 17 (06): : 1581 - 1587
  • [4] Artificial intelligence–enabled rapid diagnosis of patients with COVID-19
    Xueyan Mei
    Hao-Chih Lee
    Kai-yue Diao
    Mingqian Huang
    Bin Lin
    Chenyu Liu
    Zongyu Xie
    Yixuan Ma
    Philip M. Robson
    Michael Chung
    Adam Bernheim
    Venkatesh Mani
    Claudia Calcagno
    Kunwei Li
    Shaolin Li
    Hong Shan
    Jian Lv
    Tongtong Zhao
    Junli Xia
    Qihua Long
    Sharon Steinberger
    Adam Jacobi
    Timothy Deyer
    Marta Luksza
    Fang Liu
    Brent P. Little
    Zahi A. Fayad
    Yang Yang
    [J]. Nature Medicine, 2020, 26 : 1224 - 1228
  • [5] Role of artificial intelligence in the diagnosis of COVID-19: A mini review
    Mohammed, P. K.
    Gulati, Saakshi
    Gupta, Shivangi
    [J]. JOURNAL OF ACUTE DISEASE, 2022, 11 (05) : 168 - 172
  • [6] COVID-19 Diagnosis on Chest Radiograph Using Artificial Intelligence
    Baruah, Dhiraj
    Runge, Louis
    Jones, Richard H.
    Collins, Heather R.
    Kabakus, Ismail M.
    McBee, Morgan P.
    [J]. CUREUS JOURNAL OF MEDICAL SCIENCE, 2022, 14 (11)
  • [7] COVID-19 and Artificial Intelligence: An Approach to Forecast the Severity of Diagnosis
    Udristoiu, Anca Loredana
    Ghenea, Alice Elena
    Udristoiu, Stefan
    Neaga, Manuela
    Zlatian, Ovidiu Mircea
    Vasile, Corina Maria
    Popescu, Mihaela
    Tieranu, Eugen Nicolae
    Salan, Alex-Ioan
    Turcu, Adina Andreea
    Nicolosu, Dragos
    Calina, Daniela
    Cioboata, Ramona
    [J]. LIFE-BASEL, 2021, 11 (11):
  • [8] Development and evaluation of an artificial intelligence system for COVID-19 diagnosis
    Cheng Jin
    Weixiang Chen
    Yukun Cao
    Zhanwei Xu
    Zimeng Tan
    Xin Zhang
    Lei Deng
    Chuansheng Zheng
    Jie Zhou
    Heshui Shi
    Jianjiang Feng
    [J]. Nature Communications, 11
  • [9] Artificial Intelligence Systems for Diagnosis and Clinical Classification of COVID-19
    Yu, Lan
    Shi, Xiaoli
    Liu, Xiaoling
    Jin, Wen
    Jia, Xiaoqing
    Xi, Shuxue
    Wang, Ailan
    Li, Tianbao
    Zhang, Xiao
    Tian, Geng
    Sun, Dejun
    [J]. FRONTIERS IN MICROBIOLOGY, 2021, 12
  • [10] A Comprehensive Exploration of Artificial Intelligence Methods for COVID-19 Diagnosis
    Balasubramaniam S.
    Arishma M.
    Satheesh Kumar K.
    Dhanaraj R.K.
    [J]. EAI Endorsed Transactions on Pervasive Health and Technology, 2024, 10