COVID-19 and Artificial Intelligence: An Approach to Forecast the Severity of Diagnosis

被引:11
|
作者
Udristoiu, Anca Loredana [1 ]
Ghenea, Alice Elena [2 ]
Udristoiu, Stefan [1 ]
Neaga, Manuela [1 ]
Zlatian, Ovidiu Mircea [2 ]
Vasile, Corina Maria [3 ]
Popescu, Mihaela [4 ]
Tieranu, Eugen Nicolae [5 ]
Salan, Alex-Ioan [6 ]
Turcu, Adina Andreea [7 ]
Nicolosu, Dragos [8 ]
Calina, Daniela [9 ]
Cioboata, Ramona [10 ]
机构
[1] Univ Craiova, Fac Automat Comp & Elect, Craiova 200776, Romania
[2] Univ Med & Pharm Craiova, Dept Bacteriol Virol Parasitol, Craiova 200349, Romania
[3] Univ Med & Pharm Craiova, PhD Sch Dept, Craiova 200349, Romania
[4] Univ Med & Pharm Craiova, Dept Endocrinol, Craiova 200349, Romania
[5] Univ Med & Pharm Craiova, Dept Cardiol, Craiova 200642, Romania
[6] Univ Med & Pharm Craiova, Dept Oral & Maxillofacial Surg, Craiova 200349, Romania
[7] Victor Babes Univ Hosp Craiova, Infect Dis Dept, Craiova 200515, Romania
[8] Victor Babes Univ Hosp Craiova, Pneumol Dept, Craiova 200515, Romania
[9] Univ Pharm & Med Craiova, Dept Clin Pharm, Craiova 200349, Romania
[10] Univ Pharm & Med Craiova, Dept Pneumol, Craiova 200349, Romania
来源
LIFE-BASEL | 2021年 / 11卷 / 11期
关键词
COVID-19; artificial intelligence; deep learning;
D O I
10.3390/life11111281
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
(1) Background: The new SARS-COV-2 pandemic overwhelmed intensive care units, clinicians, and radiologists, so the development of methods to forecast the diagnosis' severity became a necessity and a helpful tool. (2) Methods: In this paper, we proposed an artificial intelligence-based multimodal approach to forecast the future diagnosis' severity of patients with laboratory-confirmed cases of SARS-CoV-2 infection. At hospital admission, we collected 46 clinical and biological variables with chest X-ray scans from 475 COVID-19 positively tested patients. An ensemble of machine learning algorithms (AI-Score) was developed to predict the future severity score as mild, moderate, and severe for COVID-19-infected patients. Additionally, a deep learning module (CXR-Score) was developed to automatically classify the chest X-ray images and integrate them into AI-Score. (3) Results: The AI-Score predicted the COVID-19 diagnosis' severity on the testing/control dataset (95 patients) with an average accuracy of 98.59%, average specificity of 98.97%, and average sensitivity of 97.93%. The CXR-Score module graded the severity of chest X-ray images with an average accuracy of 99.08% on the testing/control dataset (95 chest X-ray images). (4) Conclusions: Our study demonstrated that the deep learning methods based on the integration of clinical and biological data with chest X-ray images accurately predicted the COVID-19 severity score of positive-tested patients.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Artificial intelligence and COVID-19: A multidisciplinary approach
    Ahuja, Abhimanyu S.
    Reddy, Vineet Pasam
    Marques, Oge
    [J]. INTEGRATIVE MEDICINE RESEARCH, 2020, 9 (03)
  • [2] Artificial intelligence for stepwise diagnosis and monitoring of COVID-19
    Hengrui Liang
    Yuchen Guo
    Xiangru Chen
    Keng-Leong Ang
    Yuwei He
    Na Jiang
    Qiang Du
    Qingsi Zeng
    Ligong Lu
    Zebin Gao
    Linduo Li
    Quanzheng Li
    Fangxing Nie
    Guiguang Ding
    Gao Huang
    Ailan Chen
    Yimin Li
    Weijie Guan
    Ling Sang
    Yuanda Xu
    Huai Chen
    Zisheng Chen
    Shiyue Li
    Nuofu Zhang
    Ying Chen
    Danxia Huang
    Run Li
    Jianfu Li
    Bo Cheng
    Yi Zhao
    Caichen Li
    Shan Xiong
    Runchen Wang
    Jun Liu
    Wei Wang
    Jun Huang
    Fei Cui
    Tao Xu
    Fleming Y. M. Lure
    Meixiao Zhan
    Yuanyi Huang
    Qiang Yang
    Qionghai Dai
    Wenhua Liang
    Jianxing He
    Nanshan Zhong
    [J]. European Radiology, 2022, 32 : 2235 - 2245
  • [3] Application of Artificial Intelligence in COVID-19 Diagnosis and Therapeutics
    Asada, Ken
    Komatsu, Masaaki
    Shimoyama, Ryo
    Takasawa, Ken
    Shinkai, Norio
    Sakai, Akira
    Bolatkan, Amina
    Yamada, Masayoshi
    Takahashi, Satoshi
    Machino, Hidenori
    Kobayashi, Kazuma
    Kaneko, Syuzo
    Hamamoto, Ryuji
    [J]. JOURNAL OF PERSONALIZED MEDICINE, 2021, 11 (09):
  • [4] Artificial intelligence for stepwise diagnosis and monitoring of COVID-19
    Liang, Hengrui
    Guo, Yuchen
    Chen, Xiangru
    Ang, Keng-Leong
    He, Yuwei
    Jiang, Na
    Du, Qiang
    Zeng, Qingsi
    Lu, Ligong
    Gao, Zebin
    Li, Linduo
    Li, Quanzheng
    Nie, Fangxing
    Ding, Guiguang
    Huang, Gao
    Chen, Ailan
    Li, Yimin
    Guan, Weijie
    Sang, Ling
    Xu, Yuanda
    Chen, Huai
    Chen, Zisheng
    Li, Shiyue
    Zhang, Nuofu
    Chen, Ying
    Huang, Danxia
    Li, Run
    Li, Jianfu
    Cheng, Bo
    Zhao, Yi
    Li, Caichen
    Xiong, Shan
    Wang, Runchen
    Liu, Jun
    Wang, Wei
    Huang, Jun
    Cui, Fei
    Xu, Tao
    Lure, Fleming Y. M.
    Zhan, Meixiao
    Huang, Yuanyi
    Yang, Qiang
    Dai, Qionghai
    Liang, Wenhua
    He, Jianxing
    Zhong, Nanshan
    [J]. EUROPEAN RADIOLOGY, 2022, 32 (04) : 2235 - 2245
  • [5] Artificial intelligence in the diagnosis of COVID-19: challenges and perspectives
    Huang, Shigao
    Yang, Jie
    Fong, Simon
    Zhao, Qi
    [J]. INTERNATIONAL JOURNAL OF BIOLOGICAL SCIENCES, 2021, 17 (06): : 1581 - 1587
  • [6] Artificial intelligence–enabled rapid diagnosis of patients with COVID-19
    Xueyan Mei
    Hao-Chih Lee
    Kai-yue Diao
    Mingqian Huang
    Bin Lin
    Chenyu Liu
    Zongyu Xie
    Yixuan Ma
    Philip M. Robson
    Michael Chung
    Adam Bernheim
    Venkatesh Mani
    Claudia Calcagno
    Kunwei Li
    Shaolin Li
    Hong Shan
    Jian Lv
    Tongtong Zhao
    Junli Xia
    Qihua Long
    Sharon Steinberger
    Adam Jacobi
    Timothy Deyer
    Marta Luksza
    Fang Liu
    Brent P. Little
    Zahi A. Fayad
    Yang Yang
    [J]. Nature Medicine, 2020, 26 : 1224 - 1228
  • [7] Role of artificial intelligence in the diagnosis of COVID-19: A mini review
    Mohammed, P. K.
    Gulati, Saakshi
    Gupta, Shivangi
    [J]. JOURNAL OF ACUTE DISEASE, 2022, 11 (05) : 168 - 172
  • [8] COVID-19 Diagnosis on Chest Radiograph Using Artificial Intelligence
    Baruah, Dhiraj
    Runge, Louis
    Jones, Richard H.
    Collins, Heather R.
    Kabakus, Ismail M.
    McBee, Morgan P.
    [J]. CUREUS JOURNAL OF MEDICAL SCIENCE, 2022, 14 (11)
  • [9] Development and evaluation of an artificial intelligence system for COVID-19 diagnosis
    Cheng Jin
    Weixiang Chen
    Yukun Cao
    Zhanwei Xu
    Zimeng Tan
    Xin Zhang
    Lei Deng
    Chuansheng Zheng
    Jie Zhou
    Heshui Shi
    Jianjiang Feng
    [J]. Nature Communications, 11
  • [10] Artificial Intelligence Systems for Diagnosis and Clinical Classification of COVID-19
    Yu, Lan
    Shi, Xiaoli
    Liu, Xiaoling
    Jin, Wen
    Jia, Xiaoqing
    Xi, Shuxue
    Wang, Ailan
    Li, Tianbao
    Zhang, Xiao
    Tian, Geng
    Sun, Dejun
    [J]. FRONTIERS IN MICROBIOLOGY, 2021, 12