Imputation based mean estimators in case of missing data utilizing robust regression and variance-covariance matrices

被引:25
|
作者
Shahzad, Usman [1 ,2 ]
Al-Noor, Nadia H. [3 ]
Hanif, Muhammad [2 ]
Sajjad, Irsa [4 ]
Anas, Malik [5 ]
机构
[1] Int Islamic Univ, Dept Math & Stat, Islamabad, Pakistan
[2] PMAS Arid Agr Univ, Dept Math & Stat, Rawalpindi, Pakistan
[3] Mustansiriyah Univ, Coll Sci, Dept Math, Baghdad, Iraq
[4] Univ Lahore, Dept Lahore Business Sch, Islamabad, Pakistan
[5] Nanjing Univ Sci & Technol, Sch Sci, Nanjing, Jiangsu, Peoples R China
关键词
Imputation methods; missing data; relative mean square error; robust regression; robust variance-covariance matrices; simple random sampling; IMPROVEMENT;
D O I
10.1080/03610918.2020.1740266
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Missing data is a common problem in sample surveys and statisticians have recognized that statistical inference can be spoiled in the presence of non-response. Kadilar and Cingi built up a class of estimators for assessing the population mean under simple random sampling scheme when there are missing observations in the data set. This article firstly, proposes a class of estimators in light of Zaman and Bulut work, and after that defines another class of regression type estimators utilizing robust regression tools, robust variance-covariance matrices and supplementary information. The use of robust techniques in Zaman and Bulut ratio type estimators enable us to estimate the population mean in several cases of missing observations. The hypothetical mean square error equations are also derived for adapted and proposed estimators. These hypothetical discoveries are assessed by the numerical illustration, in support of present work.
引用
收藏
页码:4276 / 4295
页数:20
相关论文
共 50 条
  • [41] Wavelet-based estimators of mean regression function with long memory data
    Lin-yuan Li
    Yi-min Xiao
    [J]. Applied Mathematics and Mechanics, 2006, 27 : 901 - 910
  • [42] WAVELET-BASED ESTIMATORS OF MEAN REGRESSION FUNCTION WITH LONG MEMORY DATA
    李林元
    肖益民
    [J]. Applied Mathematics and Mechanics(English Edition), 2006, (07) : 901 - 910
  • [43] Mixture regression for longitudinal data based on joint mean-covariance model
    Yu, Jing
    Nummi, Tapio
    Pan, Jianxin
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2022, 190
  • [44] A Novel Missing Data Imputation Approach for Time Series Air Quality Data Based on Logistic Regression
    Chen, Mei
    Zhu, Hongyu
    Chen, Yongxu
    Wang, Youshuai
    [J]. ATMOSPHERE, 2022, 13 (07)
  • [45] Robust mixture regression modeling based on the normal mean-variance mixture distributions
    Naderi, Mehrdad
    Mirfarah, Elham
    Wang, Wan-Lun
    Lin, Tsung-, I
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2023, 180
  • [46] Step-by-step computation of corrected asymptotic variance-covariance matrices of two-stage estimators in a simultaneous equations model with a mixture of four continuous and binary dependent variables
    Mohanty, Madhu S.
    [J]. APPLIED ECONOMICS, 2019, 51 (21) : 2249 - 2265
  • [47] Fuzzy C-mean Missing Data Imputation for Analogy-based Effort Estimation
    AlMutlaq, Ayman Jalal
    Jawawi, Dayang N. A.
    Arbain, Adila Firdaus Binti
    [J]. INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2021, 12 (08) : 628 - 640
  • [48] A new family of robust quantile-regression-based mean estimators using Sarndal approach
    Anas, Malik Muhammad
    Huang, Zhengsheng
    Shahzad, Usman
    Iftikhar, Soofia
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024,
  • [49] Task reduction using regression-based missing data imputation in sparse mobile crowdsensing
    Ningrinla Marchang
    Goldie M. Meitei
    Tejendra Thakur
    [J]. The Journal of Supercomputing, 2022, 78 : 15995 - 16028
  • [50] Task reduction using regression-based missing data imputation in sparse mobile crowdsensing
    Marchang, Ningrinla
    Meitei, Goldie M.
    Thakur, Tejendra
    [J]. JOURNAL OF SUPERCOMPUTING, 2022, 78 (14): : 15995 - 16028