Accurate Remaining Useful Life Prediction With Uncertainty Quantification: A Deep Learning and Nonstationary Gaussian Process Approach

被引:26
|
作者
Xu, Zhaoyi [1 ]
Guo, Yanjie [1 ]
Saleh, Joseph Homer [1 ]
机构
[1] Georgia Inst Technol, Aerosp Sch, Atlanta, GA 30332 USA
关键词
Predictive models; Uncertainty; Feature extraction; Data models; Computational modeling; Training; Engines; Deep learning (DL); nonstationary Gaussian process regression (NSGPR); prognostic and health management (PHM); remaining useful life (RUL); DEGRADATION; FRAMEWORK; MODEL; SYSTEMS; LEVEL;
D O I
10.1109/TR.2021.3124944
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Remaining useful life (RUL) refers to the expected remaining lifespan of a component or system. Accurate RUL prediction is critical for prognostic and health management and for maintenance planning. In this article, we address three prevalent challenges in data-driven RUL prediction, namely the handling of high-dimensional input features, the robustness to noise in sensor data and prognostic datasets, and the capturing of the time-dependency between system degradation and RUL prediction. We devise a highly accurate RUL prediction model with uncertainty quantification, which integrates and leverages the advantages of deep learning and nonstationary Gaussian process regression (DL-NSGPR). We examine and benchmark our model against other advanced data-driven RUL prediction models using the turbofan engine dataset from the NASA prognostic repository. Our computational experiments show that the DL-NSGPR predictions are highly accurate with root mean square error 1.7 to 6.2 times smaller than those of competing RUL models. Furthermore, the results demonstrate that RUL uncertainty bounds with the proposed DL-NSGPR are both valid and significantly tighter than other stochastic RUL prediction models. We unpack and discuss the reasons for this excellent performance of the DL-NSGPR.
引用
收藏
页码:443 / 456
页数:14
相关论文
共 50 条
  • [1] Remaining Useful Life Prediction with Uncertainty Quantification Using Evidential Deep Learning
    Ben Ayed, Safa
    Broujeny, Roozbeh Sadeghian
    Hamza, Rachid Tahar
    JOURNAL OF ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING RESEARCH, 2025, 15 (01) : 37 - 55
  • [2] VisPro: a prognostic SqueezeNet and non-stationary Gaussian process approach for remaining useful life prediction with uncertainty quantification
    Xu, Zhaoyi
    Guo, Yanjie
    Saleh, Joseph Homer
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (17): : 14683 - 14698
  • [3] VisPro: a prognostic SqueezeNet and non-stationary Gaussian process approach for remaining useful life prediction with uncertainty quantification
    Zhaoyi Xu
    Yanjie Guo
    Joseph Homer Saleh
    Neural Computing and Applications, 2022, 34 : 14683 - 14698
  • [4] A Hybrid Bayesian Deep Learning Model for Remaining Useful Life Prognostics and Uncertainty Quantification
    Huang, Dengshan
    Bai, Rui
    Zhao, Shuai
    Wen, Pengfei
    He, Jiawei
    Wang, Shengyue
    Chen, Shaowei
    2021 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT (ICPHM), 2021,
  • [5] Uncertainty Quantification and Interval Prediction of Equipment Remaining Useful Life Based on Semisupervised Learning
    Liu, Hui
    Liu, Zhenyu
    Zhang, Donghao
    Jia, Weiqiang
    Xin, Xiaopeng
    Tan, Jianrong
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 15
  • [6] Similarity based remaining useful life prediction based on Gaussian Process with active learning
    Lin, Yan-Hui
    Ding, Ze-Qi
    Li, Yan-Fu
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2023, 238
  • [7] Significance, interpretation, and quantification of uncertainty in prognostics and remaining useful life prediction
    Sankararaman, Shankar
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2015, 52-53 : 228 - 247
  • [8] Similarity-based deep learning approach for remaining useful life prediction
    Hou, Mengru
    Pi, Dechang
    Li, Bingrong
    MEASUREMENT, 2020, 159
  • [9] A Deep Learning-Based Remaining Useful Life Prediction Approach for Bearings
    Cheng, Cheng
    Ma, Guijun
    Zhang, Yong
    Sun, Mingyang
    Teng, Fei
    Ding, Han
    Yuan, Ye
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2020, 25 (03) : 1243 - 1254
  • [10] Remaining useful life prediction with insufficient degradation datbased on deep learning approach
    Lyu, Yi
    Jiang, Yijie
    Zhang, Qichen
    Chen, Ci
    Eksploatacja i Niezawodnosc, 2021, 23 (04) : 745 - 756