Matrix Riemann-Hilbert problems and factorization on Riemann surfaces

被引:8
|
作者
Camara, M. C. [1 ]
dos Santos, A. F. [1 ]
dos Santos, Pedro F. [2 ]
机构
[1] Univ Tecn Lisboa, Dept Matemat, Ctr Anal Func & Aplicacoes, Inst Super Tecn, P-1096 Lisbon, Portugal
[2] Univ Tecn Lisboa, Dept Matemat, Ctr Anal Geometria & Sistemas, Inst Super Tecn, P-1096 Lisbon, Portugal
关键词
Riemann-Hilbert problem; factorization; Riemann surfaces; integrable systems;
D O I
10.1016/j.jfa.2008.01.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Wiener-Hopf factorization of 2 x 2 matrix functions and its close relation to scalar Riemann-Hilbert problems on Riemann surfaces is investigated. A family of function classes denoted C (Q(1), Q(2)) is defined. To each class C(Q(1), Q(2)) a Riemann surface Sigma is associated, so that the factorization of the elements of C(Q(1), Q(2)) is reduced to solving a scalar Riemann-Hilbert problem on Sigma. For the solution of this problem, a notion of Sigma-factorization is introduced and a factorization theorem is presented. An example of the factorization of a function belonging to the group of exponentials of rational functions is studied. This example may be seen as typical of applications of the results of this paper to finite-dimensional integrable systems. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:228 / 254
页数:27
相关论文
共 50 条
  • [41] Factorizations, Riemann-Hilbert problems and the corona theorem
    Camara, M. C.
    Diogo, C.
    Karlovich, Yu. I.
    Spitkovsky, I. M.
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2012, 86 : 852 - 878
  • [42] Explicit Riemann-Hilbert problems in Hardy spaces
    Semmler, Gunter
    [J]. MATHEMATISCHE NACHRICHTEN, 2011, 284 (8-9) : 1099 - 1117
  • [43] Solving Riemann-Hilbert problems with meromorphic functions
    Kucerovsky, Dan
    Sarraf, Aydin
    [J]. ACTA UNIVERSITATIS SAPIENTIAE-MATHEMATICA, 2019, 11 (01) : 117 - 130
  • [44] Riemann-Hilbert problems for multiple orthogonal polynomials
    Van Assche, W
    Geronimo, JS
    Kuijlaars, ABJ
    [J]. SPECIAL FUNCTIONS 2000: CURRENT PERSPECTIVE AND FUTURE DIRECTIONS, 2001, 30 : 23 - 59
  • [45] RIEMANN-HILBERT PROBLEMS OF DEGENERATE HYPERBOLIC SYSTEM
    Zhongtai Ma
    [J]. Annals of Applied Mathematics, 2010, (02) : 200 - 205
  • [46] Quantum Riemann-Hilbert problems for the resolved conifold
    Chuang, Wu-yen
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2023, 190
  • [47] THE DRESSING METHOD AND NONLOCAL RIEMANN-HILBERT PROBLEMS
    FOKAS, AS
    ZAKHAROV, VE
    [J]. JOURNAL OF NONLINEAR SCIENCE, 1992, 2 (01) : 109 - 134
  • [48] Nonlinear Riemann-Hilbert problems without transversality
    Efendiev, MA
    Wendland, WL
    [J]. MATHEMATISCHE NACHRICHTEN, 1997, 183 : 73 - 89
  • [49] Nonlinear Riemann-Hilbert Problems and Boundary Interpolation
    Gunter Semmler
    Elias Wegert
    [J]. Computational Methods and Function Theory, 2004, 3 (1) : 179 - 199
  • [50] Riemann-Hilbert and d-Bar Problems
    [J]. UNIFIED APPROACH TO BOUNDARY VALUE PROBLEMS, 2008, 78 : 91 - 96