Mumford-Shah functionals on graphs and their asymptotics

被引:10
|
作者
Caroccia, Marco [1 ]
Chambolle, Antonin [2 ]
Slepcev, Dejan [3 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
[2] Ecole Polytech, CMAP, F-91128 Palaiseau, France
[3] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
基金
美国安德鲁·梅隆基金会;
关键词
nonlocal variational problems; variational problems with randomness; discrete to continuum limit; asymptotic consistency; Gamma convergence; regression; FINITE-DIFFERENCE APPROXIMATION; CONSISTENCY; RECOVERY;
D O I
10.1088/1361-6544/ab81ee
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider adaptations of the Mumford-Shah functional to graphs. These are based on discretizations of nonlocal approximations to the Mumford-Shah functional. Motivated by applications in machine learning we study the random geometric graphs associated to random samples of a measure. We establish the conditions on the graph constructions under which the minimizers of graph Mumford-Shah functionals converge to a minimizer of a continuum Mumford-Shah functional. Furthermore we explicitly identify the limiting functional. Moreover we describe an efficient algorithm for computing the approximate minimizers of the graph Mumford-Shah functional.
引用
收藏
页码:3846 / 3888
页数:43
相关论文
共 50 条
  • [41] On the regularity of the edge set of Mumford-Shah minimizers
    Bonnet, A
    VARIATIONAL METHODS FOR DISCONTINUOUS STRUCTURES: APPLICATIONS TO IMAGE SEGMENTATION, CONTINUUM MECHANICS, HOMOGENIZATION, 1996, 25 : 93 - 103
  • [42] On a notion of unilateral slope for the Mumford-Shah functional
    Dal Maso, Gianni
    Toader, Rodica
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2007, 13 (5-6): : 713 - 734
  • [43] Spatio-temporal Segmentation with Mumford-Shah Functional
    El Aallaoui, Mohamed
    Gourch, Abdelwahad
    2013 ACS INTERNATIONAL CONFERENCE ON COMPUTER SYSTEMS AND APPLICATIONS (AICCSA), 2013,
  • [44] Solving Mumford-Shah model equation by AOS algorithm
    Wang, Z
    Yang, X
    Shi, PF
    2002 6TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS, VOLS I AND II, 2002, : 740 - 743
  • [45] Discrete approximation of the Mumford-Shah functional in dimension two
    Chambolle, A
    Dal Mas, G
    RAIRO-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1999, 33 (04): : 651 - 672
  • [46] Jacquard image segmentation using Mumford-Shah model
    冯志林
    尹建伟
    陈刚
    董金祥
    Journal of Zhejiang University Science A(Science in Engineering), 2006, (02) : 109 - 116
  • [47] Γ-Convergence approximation to piecewise constant Mumford-Shah segmentation
    Shen, JH
    ADVANCED CONCEPTS FOR INTELLIGENT VISION SYSTEMS, PROCEEDINGS, 2005, 3708 : 499 - 506
  • [48] HOMOGENIZATION OF HIGH-CONTRAST MUMFORD-SHAH ENERGIES
    Pellet, Xavier
    Scardia, Lucia
    Zeppieri, Caterina Ida
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2019, 51 (03) : 1696 - 1729
  • [49] Jacquard image segmentation using Mumford-Shah model
    Feng Z.-L.
    Yin J.-W.
    Chen G.
    Dong J.-X.
    Journal of Zhejiang University: Science, 2006, 7 (02): : 109 - 116
  • [50] Non-local approximation of the Mumford-Shah functional
    A. Braides
    G. Dal Maso
    Calculus of Variations and Partial Differential Equations, 1997, 5 : 293 - 322