Mumford-Shah functionals on graphs and their asymptotics

被引:10
|
作者
Caroccia, Marco [1 ]
Chambolle, Antonin [2 ]
Slepcev, Dejan [3 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
[2] Ecole Polytech, CMAP, F-91128 Palaiseau, France
[3] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
基金
美国安德鲁·梅隆基金会;
关键词
nonlocal variational problems; variational problems with randomness; discrete to continuum limit; asymptotic consistency; Gamma convergence; regression; FINITE-DIFFERENCE APPROXIMATION; CONSISTENCY; RECOVERY;
D O I
10.1088/1361-6544/ab81ee
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider adaptations of the Mumford-Shah functional to graphs. These are based on discretizations of nonlocal approximations to the Mumford-Shah functional. Motivated by applications in machine learning we study the random geometric graphs associated to random samples of a measure. We establish the conditions on the graph constructions under which the minimizers of graph Mumford-Shah functionals converge to a minimizer of a continuum Mumford-Shah functional. Furthermore we explicitly identify the limiting functional. Moreover we describe an efficient algorithm for computing the approximate minimizers of the graph Mumford-Shah functional.
引用
收藏
页码:3846 / 3888
页数:43
相关论文
共 50 条
  • [1] Smoothing of Data Using Mumford-Shah Type Functionals
    Mucha, Katharina
    Baerwolff, Guenter
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 : 2192 - 2195
  • [2] TOMOGRAPHIC RECONSTRUCTION OF ATMOSPHERIC DENSITY WITH MUMFORD-SHAH FUNCTIONALS
    Ren, David
    Waldrop, Lara
    Kamalabadi, Farzad
    2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, : 1417 - 1421
  • [3] An anisotropic Mumford-Shah model
    Vicente, David
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 447 (01) : 181 - 205
  • [4] On the Γ-limit of the Mumford-Shah functional
    Rieger, MO
    Tilli, P
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2005, 23 (04) : 373 - 390
  • [5] A Mumford-Shah model on lattice
    Yu, Lu
    Wang, Qiao
    Wu, Lenan
    Me, Jun
    IMAGE AND VISION COMPUTING, 2008, 26 (12) : 1663 - 1669
  • [6] An Overview of the Mumford-Shah Problem
    Nicola Fusco
    Milan Journal of Mathematics, 2003, 71 (1) : 95 - 119
  • [7] The Multiphase Mumford-Shah Problem
    Bucur, Dorin
    Fragala, Ilaria
    Giacomini, Alessandro
    SIAM JOURNAL ON IMAGING SCIENCES, 2019, 12 (03): : 1561 - 1583
  • [8] A Convex Relaxation of the Ambrosio-Tortorelli Elliptic Functionals for the Mumford-Shah Functional
    Kee, Youngwook
    Kim, Junmo
    2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, : 4074 - 4081
  • [9] An approximation of the Mumford-Shah energy by a family of discrete edge-preserving functionals
    Aubert, G
    Blanc-Féraud, L
    March, R
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (09) : 1908 - 1930
  • [10] The calibration method for the Mumford-Shah functional
    Alberti, G
    Bouchitté, G
    Dal Maso, G
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (03): : 249 - 254