The phase diagram and critical behavior of the three-state majority-vote model

被引:26
|
作者
Melo, Diogo F. F. [1 ]
Pereira, Luiz F. C. [2 ]
Moreira, F. G. B. [1 ]
机构
[1] Univ Fed Pernambuco, Dept Fis, BR-50670901 Recife, PE, Brazil
[2] Trinity Coll Dublin, Sch Phys, Dublin 2, Ireland
基金
爱尔兰科学基金会;
关键词
classical Monte Carlo simulations; critical exponents and amplitudes (theory); phase diagrams (theory); critical phenomena of socio-economic systems; DYNAMICS;
D O I
10.1088/1742-5468/2010/11/P11032
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The three-state majority-vote model with noise on Erdos-Renyi random graphs has been studied. Using Monte Carlo simulations we obtain the phase diagram, along with the critical exponents. Exact results for limiting cases are presented, and shown to be in agreement with numerical values. We find that the critical noise q(c) is an increasing function of the mean connectivity z of the graph. The critical exponents beta/(v) over bar, gamma/(v) over bar and 1/(v) over bar are calculated for several values of the connectivity. We also study the globally connected network, which corresponds to the mean-field limit z = N - 1 -> infinity. Our numerical results indicate that the correlation length scales with the number of nodes in the graph, which is consistent with an effective dimensionality equal to unity.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Three-state majority-vote model on square lattice
    Lima, F. W. S.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2012, 391 (04) : 1753 - 1758
  • [2] Three-state majority-vote model on small-world networks
    Bernardo J. Zubillaga
    André L. M. Vilela
    Minggang Wang
    Ruijin Du
    Gaogao Dong
    H. Eugene Stanley
    Scientific Reports, 12
  • [3] Three-state majority-vote model on small-world networks
    Zubillaga, Bernardo J.
    Vilela, Andre L. M.
    Wang, Minggang
    Du, Ruijin
    Dong, Gaogao
    Stanley, H. Eugene
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [4] Three-State Majority-vote Model on Scale-Free Networks and the Unitary Relation for Critical Exponents
    Vilela, Andre L. M.
    Zubillaga, Bernardo J.
    Wang, Chao
    Wang, Minggang
    Du, Ruijin
    Stanley, H. Eugene
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [5] Three-State Majority-vote Model on Scale-Free Networks and the Unitary Relation for Critical Exponents
    André L. M. Vilela
    Bernardo J. Zubillaga
    Chao Wang
    Minggang Wang
    Ruijin Du
    H. Eugene Stanley
    Scientific Reports, 10
  • [6] Ising percolation in a three-state majority vote model
    Balankin, Alexander S.
    Martinez-Cruz, M. A.
    Gayosso Martinez, Felipe
    Mena, Baltasar
    Tobon, Atalo
    Patino-Ortiz, Julian
    Patino-Ortiz, Miguel
    Samayoa, Didier
    PHYSICS LETTERS A, 2017, 381 (05) : 440 - 445
  • [7] Dynamical Critical Exponent for the Majority-Vote Model
    Abel G. da Silva Filho
    F. G. Brady Moreira
    Journal of Statistical Physics, 2002, 106 : 391 - 401
  • [8] Dynamical critical exponent for the majority-vote model
    da Silva, AG
    Moreira, FGB
    JOURNAL OF STATISTICAL PHYSICS, 2002, 106 (1-2) : 391 - 401
  • [9] Critical noise of majority-vote model on complex networks
    Chen, Hanshuang
    Shen, Chuansheng
    He, Gang
    Zhang, Haifeng
    Hou, Zhonghuai
    PHYSICAL REVIEW E, 2015, 91 (02):
  • [10] Diffusive majority-vote model
    Lima, J. R. S.
    Lima, F. W. S.
    Alves, T. F. A.
    Alves, G. A.
    Macedo-Filho, A.
    PHYSICAL REVIEW E, 2022, 105 (03)