Renyi entropies and Fisher informations as measures of nonextensivity in a Tsallis setting

被引:59
|
作者
Pennini, F
Plastino, AR
Plastino, A
机构
[1] Natl Univ La Plata, Fac Ciencias Astron & Geofis, RA-1900 La Plata, Argentina
[2] CONICET, Argentine Natl Res Ctr, RA-1033 Buenos Aires, DF, Argentina
来源
PHYSICA A | 1998年 / 258卷 / 3-4期
关键词
Renyi and Tsallis entropies; Fisher information; nonextensivity;
D O I
10.1016/S0378-4371(98)00272-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study nonextensive statistical scenarios a la Tsallis with reference to Fisher's information and Renyi's entropy. A new way of evaluating Tsallis' generalized expectation values is examined within such a context, and is shown to lead to a much better Cramer-Rao bound than the customary procedure. A connection between the information measures of Fisher's and Renyi's is found. We show that Fisher's measure for translation families remains additive even in a non-extensive Tsallis setting. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:446 / 457
页数:12
相关论文
共 47 条
  • [21] Generalization of the de Bruijn Identity to General φ-Entropies and φ-Fisher Informations
    Valero Toranzo, Irene
    Zozor, Steeve
    Brossier, Jean-Marc
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (10) : 6743 - 6758
  • [22] Area-law versus Renyi and Tsallis black hole entropies
    Nojiri, Shin'ichi
    Odintsov, Sergei D.
    Faraoni, Valerio
    PHYSICAL REVIEW D, 2021, 104 (08)
  • [23] Generalizations of operator Shannon inequality based on Tsallis and Renyi relative entropies
    Isa, Hiroshi
    Ito, Masatoshi
    Kamei, Eizaburo
    Tohyama, Hiroaki
    Watanabe, Masayuki
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (10) : 3148 - 3155
  • [24] Monogamy of Multi-qubit Entanglement in Terms of Renyi and Tsallis Entropies
    Kim, Jeong San
    Sanders, Barry C.
    THEORY OF QUANTUM COMPUTATION, COMMUNICATION, AND CRYPTOGRAPHY, 2011, 6519 : 159 - 167
  • [25] Renyi and Tsallis Entropies of the Aharonov-Bohm Ring in Uniform Magnetic Fields
    Olendski, Oleg
    ENTROPY, 2019, 21 (11)
  • [26] Comment on "Critique of multinomial coefficient method for evaluating Tsallis and Renyi entropies" by AS Parvan
    Oikonomou, Thomas
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2011, 390 (05) : 781 - 784
  • [27] Software Code Smell Prediction Model Using Shannon, Renyi and Tsallis Entropies
    Gupta, Aakanshi
    Suri, Bharti
    Kumar, Vijay
    Misra, Sanjay
    Blazauskas, Tomas
    Damasevicius, Robertas
    ENTROPY, 2018, 20 (05)
  • [28] Tsallis, Renyi, and Shannon entropies for time-dependent mesoscopic RLC circuits
    Aguiar, V.
    Guedes, I.
    Pedrosa, I. A.
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2015, 2015 (11):
  • [29] Renyi and Tsallis entropies of the Dirichlet and Neumann one-dimensional quantum wells
    Olendski, Oleg
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2020, 120 (12)
  • [30] Multi-objective optimization for worldview image segmentation funded on the entropies of Tsallis and Renyi
    Mechkouri, Salah Eddine
    El Joumani, Saleh
    Zennouhi, Rachid
    Masmoudi, Lhoussaine
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (41-42) : 30637 - 30652