Synthesis of multi-year PV production data using generative adversarial networks

被引:1
|
作者
Kimball, Gregory M. [1 ]
Pauchet, Camille M. [1 ]
Ghadami, Rasoul [1 ]
Zaragoza, Alberto Fonts [1 ]
机构
[1] SunPower Corp, Richmond, CA 94804 USA
关键词
solar resource variability; energy storage; demand charge management; generative adversarial networks;
D O I
10.1109/PVSC43889.2021.9518979
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Multi-year forecasts of PV production are important for economic assessment of behind-the-meter PV+BES (photovoltaic plus battery energy storage) systems. Historical solar resource data is available for many locations in the United States, but these data are limited and must be converted from solar resource to PV production data before they can be used in BES control simulations. We propose both rule-based and generative adversarial network methods for synthesizing multi-year PV production forecasts. These methods use reference PV production and latitude-longitude inputs to generate hundreds of PV production scenarios which enable detailed simulation of behind-the-meter demand charge management.
引用
收藏
页码:608 / 613
页数:6
相关论文
共 50 条
  • [41] Multi-view Generative Adversarial Networks
    Chen, Mickael
    Denoyer, Ludovic
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2017, PT II, 2017, 10535 : 175 - 188
  • [42] MULTI-FOCUS ULTRASOUND IMAGING USING GENERATIVE ADVERSARIAL NETWORKS
    Goudarzi, Sobhan
    Asif, Amir
    Rivaz, Hassan
    2019 IEEE 16TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2019), 2019, : 1118 - 1121
  • [43] Synthesis of Glioblastoma Segmentation Data Using Generative Adversarial Network
    Samartha, Mullapudi Venkata Sai
    Maheswar, Gorantla
    Palei, Shantilata
    Jena, Biswajit
    Saxena, Sanjay
    COMPUTER VISION AND IMAGE PROCESSING, CVIP 2023, PT II, 2024, 2010 : 301 - 312
  • [44] Multi-Scale Terrain Texturing using Generative Adversarial Networks
    Klein, Jonathan
    Hartmann, Stefan
    Weinmann, Michael
    Michels, Dominik L.
    2017 INTERNATIONAL CONFERENCE ON IMAGE AND VISION COMPUTING NEW ZEALAND (IVCNZ), 2017,
  • [45] MIC: Multi-view Image Classifier using Generative Adversarial Networks for Missing Data Imputation
    Aversano, Gianmarco
    Jarraya, Mahmoud
    Marwani, Maher
    Lahouli, Ichraf
    Skhiri, Sabri
    2021 18TH INTERNATIONAL MULTI-CONFERENCE ON SYSTEMS, SIGNALS & DEVICES (SSD), 2021, : 283 - 288
  • [46] Data Augmentation Using Generative Adversarial Networks for Multi-Class Segmentation of Lung Confocal IF Images
    Katsuma, Daiki
    Kawanaka, Hiroharu
    Prasath, V. B. Surya
    Aronow, Bruce J.
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2022, 26 (02) : 138 - 146
  • [47] Image Synthesis in Multi-Contrast MRI With Conditional Generative Adversarial Networks
    Dar, Salman U. H.
    Yurt, Mahmut
    Karacan, Levent
    Erdem, Aykut
    Erdem, Erkut
    Cukur, Tolga
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (10) : 2375 - 2388
  • [48] Generation of Synthetic Tabular Healthcare Data Using Generative Adversarial Networks
    Nik, Alireza Hossein Zadeh
    Riegler, Michael A.
    Halvorsen, Pal
    Storas, Andrea M.
    MULTIMEDIA MODELING, MMM 2023, PT I, 2023, 13833 : 434 - 446
  • [49] User-controllable Multi-texture Synthesis with Generative Adversarial Networks
    Alanov, Aibek
    Kochurov, Max
    Volkhonskiy, Denis
    Yashkov, Daniil
    Burnaev, Evgeny
    Vetrov, Dmitry
    VISAPP: PROCEEDINGS OF THE 15TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS, VOL 4: VISAPP, 2020, : 214 - 221
  • [50] mustGAN: multi-stream Generative Adversarial Networks for MR Image Synthesis
    Yurt, Mahmut
    Dar, Salman U. H.
    Erdem, Aykut
    Erdem, Erkut
    Oguz, Kader K.
    Cukur, Tolga
    MEDICAL IMAGE ANALYSIS, 2021, 70