Synthesis of multi-year PV production data using generative adversarial networks

被引:1
|
作者
Kimball, Gregory M. [1 ]
Pauchet, Camille M. [1 ]
Ghadami, Rasoul [1 ]
Zaragoza, Alberto Fonts [1 ]
机构
[1] SunPower Corp, Richmond, CA 94804 USA
关键词
solar resource variability; energy storage; demand charge management; generative adversarial networks;
D O I
10.1109/PVSC43889.2021.9518979
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Multi-year forecasts of PV production are important for economic assessment of behind-the-meter PV+BES (photovoltaic plus battery energy storage) systems. Historical solar resource data is available for many locations in the United States, but these data are limited and must be converted from solar resource to PV production data before they can be used in BES control simulations. We propose both rule-based and generative adversarial network methods for synthesizing multi-year PV production forecasts. These methods use reference PV production and latitude-longitude inputs to generate hundreds of PV production scenarios which enable detailed simulation of behind-the-meter demand charge management.
引用
收藏
页码:608 / 613
页数:6
相关论文
共 50 条
  • [1] Realistic Data Synthesis Using Enhanced Generative Adversarial Networks
    Baowaly, Mrinal Kanti
    Liu, Chao-Lin
    Chen, Kuan-Ta
    2019 IEEE SECOND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND KNOWLEDGE ENGINEERING (AIKE), 2019, : 289 - 292
  • [2] Data Synthesis based on Generative Adversarial Networks
    Park, Noseong
    Mohammadi, Mahmoud
    Gorde, Kshitij
    Jajodia, Sushil
    Park, Hongkyu
    Kim, Youngmin
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2018, 11 (10): : 1071 - 1083
  • [3] Relational Data Synthesis using Generative Adversarial Networks: A Design Space Exploration
    Fan, Ju
    Chen, Junyou
    Liu, Tongyu
    Shen, Yuwei
    Li, Guoliang
    Du, Xiaoyong
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2020, 13 (11): : 1962 - 1975
  • [4] Medical Image Synthesis for Data Augmentation and Anonymization Using Generative Adversarial Networks
    Shin, Hoo-Chang
    Tenenholtz, Neil A.
    Rogers, Jameson K.
    Schwarz, Christopher G.
    Senjem, Matthew L.
    Gunter, Jeffrey L.
    Andriole, Katherine P.
    Michalski, Mark
    SIMULATION AND SYNTHESIS IN MEDICAL IMAGING, 2018, 11037 : 1 - 11
  • [5] Mixed Data Imputation Using Generative Adversarial Networks
    Khan, Wasif
    Zaki, Nazar
    Ahmad, Amir
    Masud, Mohammad Mehedy
    Ali, Luqman
    Ali, Nasloon
    Ahmed, Luai A.
    IEEE ACCESS, 2022, 10 : 124475 - 124490
  • [6] Anonymising Pathology Data using Generative Adversarial Networks
    Morrison, David
    Harris-Birtill, David
    MEDICAL IMAGING 2022: DIGITAL AND COMPUTATIONAL PATHOLOGY, 2022, 12039
  • [7] Human Video Synthesis Using Generative Adversarial Networks
    Azeem, Abdullah
    Riaz, Waqar
    Siddique, Abubakar
    Saifullah
    Junaid, Tahir
    FIFTH INTERNATIONAL WORKSHOP ON PATTERN RECOGNITION, 2020, 11526
  • [8] Radar Waveform Synthesis Using Generative Adversarial Networks
    Saarinen, Vesa
    Koivunen, Visa
    2020 IEEE RADAR CONFERENCE (RADARCONF20), 2020,
  • [9] Forecasting Taxi Demands Using Generative Adversarial Networks with Multi-Source Data
    Naji, Hasan A. H.
    Xue, Qingji
    Zhu, Huijun
    Li, Tianfeng
    APPLIED SCIENCES-BASEL, 2021, 11 (20):
  • [10] Multiclass Texture Synthesis Using Generative Adversarial Networks
    Kollar, Maros
    Hudec, Lukas
    Benesova, Wanda
    PROCEEDINGS OF THE 18TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS, VISIGRAPP 2023, 2023, : 87 - 97