Ambient Carbon Dioxide Capture by Boron-Rich Boron Nitride Nanotube

被引:149
|
作者
Choi, Heechol [2 ]
Park, Young Choon [2 ]
Kim, Yong-Hyun [1 ]
Lee, Yoon Sup [2 ]
机构
[1] Korea Adv Inst Sci & Technol, Grad Sch Nanosci & Technol WCU, Taejon 305701, South Korea
[2] Korea Adv Inst Sci & Technol, Dept Chem, Taejon 305701, South Korea
基金
新加坡国家研究基金会;
关键词
CO2; CAPTURE; ADSORPTION; ENERGIES; BUNDLES;
D O I
10.1021/ja1101807
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Carbon dioxides (CO2) emitted from large-scale coal-fired power stations or industrial manufacturing plants have to be properly captured to minimize environmental side effects. From results of ab initio calculations using plane waves [PAW-PBE] and localized atomic orbitals [ONIOM(wB97X-D/6-31G*:AM1)], we report strong CO2 adsorption on boron antisite (B-N) in boron-rich boron nitride nanotube (BNNT). We have identified two adsorption states: (1) A linear CO2 molecule is physically adsorbed on the B-N, showing electron donation from the CO2 lonepair states to the B-N double-acceptor state, and (2) the physisorbed CO2 undergoes a carboxylate-like structural distortion and C=O pi-bond breaking due to electron back-donation from B-N to CO2. The CO2 chemisorption energy on B-N is almost independent of tube diameter and, more importantly, higher than the standard free energy of gaseous CO2 at room temperature. This implies that boron-rich BNNT could capture CO2 effectively at ambient conditions.
引用
收藏
页码:2084 / 2087
页数:4
相关论文
共 50 条
  • [21] Mechanical properties and hardness of boron and boron-rich solids
    S. Veprek
    R. F. Zhang
    A. S. Argon
    Journal of Superhard Materials, 2011, 33 : 409 - 420
  • [22] BIPOLARONS IN BORON-RICH ICOSAHEDRA - EFFECTS OF CARBON SUBSTITUTION
    HOWARD, IA
    BECKEL, CL
    EMIN, D
    PHYSICAL REVIEW B, 1987, 35 (17): : 9265 - 9270
  • [23] Structure formation in boron-rich iron–boron compounds
    Pomel’nikova A.S.
    Fetisov G.P.
    Zhuk V.M.
    Pomel’nikova, A.S. (pomlnikovalla@rambler.ru), 1600, Izdatel'stvo Nauka (2016): : 1227 - 1230
  • [24] Thermal expansion of α-boron and some boron-rich pnictides
    Cherednichenko, Kirill A.
    Solozhenko, Vladimir L.
    SOLID STATE COMMUNICATIONS, 2019, 303
  • [25] Structure and mechanical properties of boron-rich boron carbides
    Cheng, Chun
    Reddy, Kolan. M.
    Hirata, Akihiko
    Fujita, Takeshi
    Chen, Mingwei
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2017, 37 (15) : 4514 - 4523
  • [26] Mechanical Properties and Hardness of Boron and Boron-Rich Solids
    Veprek, S.
    Zhang, R. F.
    Argon, A. S.
    JOURNAL OF SUPERHARD MATERIALS, 2011, 33 (06) : 409 - 420
  • [27] BORON-RICH TUNGSTEN BORIDES
    NOWOTNY, H
    HASCHKE, H
    BENESOVS.F
    MONATSHEFTE FUR CHEMIE, 1967, 98 (03): : 547 - &
  • [28] Boron-Rich Boron Carbide Nanoparticles as a Carrier in Boron Neutron Capture Therapy: Their Influence on Tumor and Immune Phagocytic Cells
    Kozien, Dawid
    Szermer-Olearnik, Bozena
    Rapak, Andrzej
    Szczygiel, Agnieszka
    Anger-Gora, Natalia
    Boratynski, Janusz
    Pajtasz-Piasecka, Elzbieta
    Bucko, Miroslaw M.
    Pedzich, Zbigniew
    MATERIALS, 2021, 14 (11)
  • [29] Study on extracting boron from boron-rich slag
    Liu, Sulan
    Zhang, Xianpeng
    Cui, Chuanmeng
    Huagong Kuangshan Jishu/Technology for Chemical Mines, 26 (05): : 38 - 40
  • [30] Aminopolymer functionalization of boron nitride nanosheets for highly efficient capture of carbon dioxide
    Huang, Kuan
    Liang, Liangbo
    Chai, Songhai
    Tumuluri, Uma
    Li, Meijun
    Wu, Zili
    Sumpter, Bobby G.
    Dai, Sheng
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (31) : 16241 - 16248