Ordered *-rings

被引:9
|
作者
Craven, TC [1 ]
Smith, TL
机构
[1] Univ Hawaii, Dept Math, Honolulu, HI 96822 USA
[2] Univ Cincinnati, Dept Math Sci, Cincinnati, OH 45221 USA
关键词
*-ordering; valuation; Ore domain;
D O I
10.1006/jabr.2000.8644
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
M. Marshall (2000, Comm. Algebra 28, 1157-2273) has generalized the notion of *-ordering to the setting of a ring with involution. Ln this paper we analyze the ways in which a given *-ordering (on the set of symmetric elements) can be extended to a multiplicatively closed ordering on a larger set of elements. A complete answer is given for Ore domains. (C) 2001 Academic Press.
引用
收藏
页码:314 / 327
页数:14
相关论文
共 50 条
  • [21] DIMENSION OF RINGS AND ORDERED SETS
    RENTSCHLER, R
    GABRIEL, P
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1967, 265 (22): : 712 - +
  • [22] QUOTIENT RINGS OF A CLASS OF LATTICE-ORDERED-RINGS
    STEINBERG, SA
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1973, 25 (03): : 627 - 645
  • [23] ON ORDERED NEAR-RINGS
    PILZ, GF
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 17 (01): : 164 - &
  • [24] SHEAVES OF DOMAINS AND ORDERED RINGS
    KENNISON, J
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (03): : A373 - A373
  • [25] RINGS AND PARTLY ORDERED SYSTEMS
    NAKANO, T
    MATHEMATISCHE ZEITSCHRIFT, 1967, 99 (05) : 355 - &
  • [26] The quaternion rings on the ordered fields
    Hao, XM
    ORDERED ALGEBRAIC STRUCTURES: NANJING, 2001, 16 : 73 - 75
  • [27] PARTIALLY ORDERED RINGS II
    Kitamura, Yoshimi
    Tanaka, Yoshio
    TSUKUBA JOURNAL OF MATHEMATICS, 2016, 39 (02) : 181 - 198
  • [28] Topological Ordered Rings and Measures
    Francisco Javier García-Pacheco
    M. A. Moreno-Frías
    Marina Murillo-Arcila
    Results in Mathematics, 2023, 78
  • [29] CLASS OF RINGS CONTAINING RINGS WITH TOTALLY ORDERED IDEAL LATTICE
    LEMONNIER, B
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1971, 272 (14): : 942 - +
  • [30] Division closed partially ordered rings
    Ma, Jingjing
    McGovern, Warren Wm.
    ALGEBRA UNIVERSALIS, 2017, 78 (04) : 515 - 532