Quantifying and Mitigating the Effect of Preferential Sampling on Phylodynamic Inference

被引:34
|
作者
Karcher, Michael D. [1 ]
Palacios, Julia A. [2 ,3 ,4 ]
Bedford, Trevor [5 ]
Suchard, Marc A. [6 ,7 ,8 ]
Minin, Vladimir N. [1 ,9 ]
机构
[1] Univ Washington, Dept Stat, Seattle, WA 98195 USA
[2] Harvard Univ, Dept Organism & Evolutionary Biol, Cambridge, MA 02138 USA
[3] Brown Univ, Dept Ecol & Evolutionary Biol, Providence, RI 02912 USA
[4] Brown Univ, Ctr Computat Mol Biol, Providence, RI 02912 USA
[5] Fred Hutchinson Canc Res Ctr, Vaccine & Infect Dis Div, 1124 Columbia St, Seattle, WA 98104 USA
[6] Univ Calif Los Angeles, David Geffen Sch Med, Dept Human Genet, Los Angeles, CA 90095 USA
[7] Univ Calif Los Angeles, David Geffen Sch Med, Dept Biomath, Los Angeles, CA 90095 USA
[8] Univ Calif Los Angeles, Fielding Sch Publ Hlth, Dept Biostat, Los Angeles, CA USA
[9] Univ Washington, Dept Biol, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
POPULATION-DYNAMICS; HISTORY; SKYLINE; GROWTH;
D O I
10.1371/journal.pcbi.1004789
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Phylodynamics seeks to estimate effective population size fluctuations from molecular sequences of individuals sampled from a population of interest. One way to accomplish this task formulates an observed sequence data likelihood exploiting a coalescent model for the sampled individuals' genealogy and then integrating over all possible genealogies via Monte Carlo or, less efficiently, by conditioning on one genealogy estimated from the sequence data. However, when analyzing sequences sampled serially through time, current methods implicitly assume either that sampling times are fixed deterministically by the data collection protocol or that their distribution does not depend on the size of the population. Through simulation, we first show that, when sampling times do probabilistically depend on effective population size, estimation methods may be systematically biased. To correct for this deficiency, we propose a new model that explicitly accounts for preferential sampling by modeling the sampling times as an inhomogeneous Poisson process dependent on effective population size. We demonstrate that in the presence of preferential sampling our new model not only reduces bias, but also improves estimation precision. Finally, we compare the performance of the currently used phylodynamic methods with our proposed model through clinically-relevant, seasonal human influenza examples.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Quantifying the importance of preferential flow in a riparian buffer
    Guertault L.
    Fox G.A.
    Halihan T.
    Muñoz-Carpena R.
    Transactions of the ASABE, 2021, 63 (04) : 937 - 947
  • [42] Quantifying and Mitigating IGMP Filtering in Topology Discovery
    Marchetta, Pietro
    Merindol, Pascal
    Donnet, Benoit
    Pescape, Antonio
    Pansiot, Jean-Jacques
    2012 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2012,
  • [43] Mitigating the Effect of Out-of-Vocabulary Entity Pairs in Matrix Factorization for KB Inference
    Jain, Prachi
    Murty, Shikhar
    Mausam
    Chakrabarti, Soumen
    PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 4122 - 4129
  • [44] Accelerating Distributed Inference of Sparse Deep Neural Networks via Mitigating the Straggler Effect
    Mofrad, Mohammad Hasanzadeh
    Melhem, Rami
    Ahmad, Yousuf
    Hammoud, Mohammad
    2020 IEEE HIGH PERFORMANCE EXTREME COMPUTING CONFERENCE (HPEC), 2020,
  • [45] Preferential sampling in veterinary parasitological surveillance
    Cecconi, Lorenzo
    Biggeri, Annibale
    Grisotto, Laura
    Berrocal, Veronica
    Rinaldi, Laura
    Musella, Vincenzo
    Cringoli, Giuseppe
    Catelan, Dolores
    GEOSPATIAL HEALTH, 2016, 11 (01) : 62 - 69
  • [46] Preferential sampling for statistical model checking
    Barbot B.
    Haddad S.
    Picaronny C.
    Journal Europeen des Systemes Automatises, 2011, 45 (1-3): : 237 - 252
  • [47] Preferential sampling of helicity by isotropic helicoids
    Gustavsson, Kristian
    Biferale, Luca
    PHYSICAL REVIEW FLUIDS, 2016, 1 (05):
  • [48] Geostatistical Sampling Designs Under Preferential Sampling for Black Scabbardfish
    Simoes, Paula
    Carvalho, Maria Lucilia
    Figueiredo, Ivone
    Monteiro, Andreia
    Natario, Isabel
    RECENT DEVELOPMENTS IN STATISTICS AND DATA SCIENCE, SPE2021, 2022, 398 : 137 - 151
  • [49] Testing Preferential Domains Using Sampling
    Dey, Palash
    Nath, Swaprava
    Shakya, Garima
    AAMAS '19: PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS, 2019, : 855 - 863
  • [50] Preferential sampling for bivariate spatial data
    Shirota, Shinichiro
    Gelfand, Alan E.
    SPATIAL STATISTICS, 2022, 51