Quantifying and Mitigating the Effect of Preferential Sampling on Phylodynamic Inference

被引:34
|
作者
Karcher, Michael D. [1 ]
Palacios, Julia A. [2 ,3 ,4 ]
Bedford, Trevor [5 ]
Suchard, Marc A. [6 ,7 ,8 ]
Minin, Vladimir N. [1 ,9 ]
机构
[1] Univ Washington, Dept Stat, Seattle, WA 98195 USA
[2] Harvard Univ, Dept Organism & Evolutionary Biol, Cambridge, MA 02138 USA
[3] Brown Univ, Dept Ecol & Evolutionary Biol, Providence, RI 02912 USA
[4] Brown Univ, Ctr Computat Mol Biol, Providence, RI 02912 USA
[5] Fred Hutchinson Canc Res Ctr, Vaccine & Infect Dis Div, 1124 Columbia St, Seattle, WA 98104 USA
[6] Univ Calif Los Angeles, David Geffen Sch Med, Dept Human Genet, Los Angeles, CA 90095 USA
[7] Univ Calif Los Angeles, David Geffen Sch Med, Dept Biomath, Los Angeles, CA 90095 USA
[8] Univ Calif Los Angeles, Fielding Sch Publ Hlth, Dept Biostat, Los Angeles, CA USA
[9] Univ Washington, Dept Biol, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
POPULATION-DYNAMICS; HISTORY; SKYLINE; GROWTH;
D O I
10.1371/journal.pcbi.1004789
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Phylodynamics seeks to estimate effective population size fluctuations from molecular sequences of individuals sampled from a population of interest. One way to accomplish this task formulates an observed sequence data likelihood exploiting a coalescent model for the sampled individuals' genealogy and then integrating over all possible genealogies via Monte Carlo or, less efficiently, by conditioning on one genealogy estimated from the sequence data. However, when analyzing sequences sampled serially through time, current methods implicitly assume either that sampling times are fixed deterministically by the data collection protocol or that their distribution does not depend on the size of the population. Through simulation, we first show that, when sampling times do probabilistically depend on effective population size, estimation methods may be systematically biased. To correct for this deficiency, we propose a new model that explicitly accounts for preferential sampling by modeling the sampling times as an inhomogeneous Poisson process dependent on effective population size. We demonstrate that in the presence of preferential sampling our new model not only reduces bias, but also improves estimation precision. Finally, we compare the performance of the currently used phylodynamic methods with our proposed model through clinically-relevant, seasonal human influenza examples.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Geostatistical inference under preferential sampling
    Diggle, Peter J.
    Menezes, Raquel
    Su, Ting-li
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2010, 59 : 191 - 232
  • [2] Sampling through time and phylodynamic inference with coalescent and birth-death models
    Volz, Erik M.
    Frost, Simon D. W.
    JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2014, 11 (101)
  • [3] The effect of preferential sampling on sampling variance
    Clifford, D.
    Kuhnert, P.
    Dobbie, M.
    Baldock, J.
    Harch, B.
    McKenzie, N. J.
    Wheeler, I.
    McBratney, A. B.
    DIGITAL SOIL ASSESSMENTS AND BEYOND, 2012, : 223 - 226
  • [4] Towards Quantifying Sampling Bias in Network Inference
    Espin-Noboa, Lisette
    Wagner, Claudia
    Karimi, Fariba
    Lerman, Kristina
    COMPANION PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2018 (WWW 2018), 2018, : 1277 - 1285
  • [5] Eight challenges in phylodynamic inference
    Frost, Simon D. W.
    Pybus, Oliver G.
    Gog, Julia R.
    Viboud, Cecile
    Bonhoeffer, Sebastian
    Bedford, Trevor
    EPIDEMICS, 2015, 10 : 88 - 92
  • [6] Declustering of clustered preferential sampling for histogram and semivariogram inference
    Olea, Ricardo A.
    MATHEMATICAL GEOLOGY, 2007, 39 (05): : 453 - 467
  • [7] Declustering of Clustered Preferential Sampling for Histogram and Semivariogram Inference
    Ricardo A. Olea
    Mathematical Geology, 2007, 39 : 453 - 467
  • [8] Quantifying and mitigating bias in inference on gravitational wave source populations
    Gair, Jonathan R.
    Moore, Christopher J.
    PHYSICAL REVIEW D, 2015, 91 (12):
  • [9] Phylodynamic Inference for Structured Epidemiological Models
    Rasmussen, David A.
    Volz, Erik M.
    Koelle, Katia
    PLOS COMPUTATIONAL BIOLOGY, 2014, 10 (04)
  • [10] Bayesian phylodynamic inference with complex models
    Volz, Erik M.
    Siveroni, Igor
    PLOS COMPUTATIONAL BIOLOGY, 2018, 14 (11)