ATP is not essential for cadaverine production by Escherichia coli whole-cell bioconversion

被引:1
|
作者
Song, Chenbin [1 ]
Li, Yijing [1 ]
Ma, Weichao [1 ,2 ]
机构
[1] Tianshui Normal Univ, Coll Bioengn & Biotechnol, Tianshui Engn Res Ctr Agr Prod Deep Proc, Tianshui 741001, Peoples R China
[2] Tianshui Normal Univ, Coll Bioengn & Biotechnol, 105 Xihe South Rd, Tianshui 741001, Peoples R China
关键词
Cadaverine; Intracellular ATP; Methionine adenosyltransferase; Whole-cell bioconversion; Proton motive force; DECARBOXYLATION; FORCE; NYLON; CADA;
D O I
10.1016/j.jbiotec.2022.05.014
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
ATP plays an essential role in the substrate/product transmembrane transportation during whole-cell biocon-version. This study aimed to address the impact of ATP upon cadaverine synthesis by whole-cell biocatalysts. The results showed no significant change in the ATP content (P = 0.625), and the specific cadaverine yield (P = 0.374) was observed in enzyme-catalyzed cadaverine synthesis with exogenous addition of ATP, indicating that the enzyme-catalyzed process does not require the participation of ATP. Furthermore, a whole-cell biocatalyst co-overexpressed methionine adenosyltransferase (MetK), lysine decarboxylase (CadA), and lysine/cadaverine antiporter (CadB) was constructed and used to investigate the effect of ATP deficiency on the cadaverine pro-duction by conversion of L-methionine and L-lysine, simultaneously. The results showed no significant difference (P = 0.585) in the specific cadaverine content between high and low levels of intracellular ATP. In addition, the intra-and extracellular cadaverine concentration and the ratio of ATP/ADP of whole-cell biocatalyst were determined. Results showed that the extracellular cadaverine concentration was much higher than the intra-cellular concentration, and no significant changes in ATP/ADP ratio during cadaverine synthesis. In contrast, an inhibition effect of the proton motive force (PMF) inhibitor carbonyl cyanide m-chlorophenylhydrazone (CCCP) on cadaverine production was detected. These findings strongly suggest that cadaverine transport in whole-cell biocatalysts was energized by PMF rather than ATP. Finally, a model was proposed to describe cadaverine's PMF-driven transport under different external pHs during whole-cell biocatalysis. This study is the first to experi-mentally confirm that the cadaverine production by Escherichia coli whole-cell bioconversion is independent of intracellular ATP, which helps guide the subsequent construction of biocatalysts and optimize transformation conditions.
引用
收藏
页码:44 / 50
页数:7
相关论文
共 50 条
  • [21] Efficient production of γ-aminobutyric acid using engineered Escherichia coli whole-cell catalyst
    Chang, Fangfang
    Wang, Yuheng
    Zhang, Jie
    Tu, Tao
    Luo, Huiying
    Huang, Huoqing
    Bai, Yingguo
    Qin, Xing
    Wang, Yaru
    Yao, Bin
    Wang, Yuan
    Wang, Xiaolu
    Enzyme and Microbial Technology, 2024, 174
  • [22] Efficient production of acetoin from lactate by engineered Escherichia coli whole-cell biocatalyst
    Zhenzhen Cui
    Meiyu Zheng
    Mengnan Ding
    Wei Dai
    Zhiwen Wang
    Tao Chen
    Applied Microbiology and Biotechnology, 2023, 107 : 3911 - 3924
  • [23] Efficient production of γ-aminobutyric acid using engineered Escherichia coli whole-cell catalyst
    Chang, Fangfang
    Wang, Yuheng
    Zhang, Jie
    Tu, Tao
    Luo, Huiying
    Huang, Huoqing
    Bai, Yingguo
    Qin, Xing
    Wang, Yaru
    Yao, Bin
    Wang, Yuan
    Wang, Xiaolu
    ENZYME AND MICROBIAL TECHNOLOGY, 2024, 174
  • [24] Multienzyme Whole-Cell In Situ Biocatalysis for the Production of Flaviolin in Permeabilized Cells of Escherichia coli
    Krauser, Steffen
    Kiefer, Patrick
    Heinzle, Elmar
    CHEMCATCHEM, 2012, 4 (06) : 786 - 788
  • [25] Construction of an efficient Escherichia coli whole-cell biocatalyst for D-mannitol production
    Reshamwala, Shamlan M. S.
    Pagar, Sandip K.
    Velhal, Vishal S.
    Maranholakar, Vijay M.
    Talangkar, Vishal G.
    Lali, Arvind M.
    JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 2014, 118 (06) : 628 - 631
  • [26] Efficient production of acetoin from lactate by engineered Escherichia coli whole-cell biocatalyst
    Cui, Zhenzhen
    Zheng, Meiyu
    Ding, Mengnan
    Dai, Wei
    Wang, Zhiwen
    Chen, Tao
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2023, 107 (12) : 3911 - 3924
  • [27] Biosynthesis of 4-hydroxybenzylideneacetone by Whole-Cell Escherichia coli
    Zhu, Xingmiao
    Chen, Pengcheng
    Zheng, Pu
    CATALYSTS, 2022, 12 (09)
  • [28] Whole-cell Escherichia coli lactate biosensor for monitoring mammalian cell cultures during biopharmaceutical production
    Goers, Lisa
    Ainsworth, Catherine
    Goey, Cher Hui
    Kontoravdi, Cleo
    Freemont, Paul S.
    Polizzi, Karen M.
    BIOTECHNOLOGY AND BIOENGINEERING, 2017, 114 (06) : 1290 - 1300
  • [29] Optimized Enzyme Production for the Escherichia coli Whole-Cell Biocatalytic Synthesis of Codeine from Thebaine
    Jahanian, Ali
    Agudelo, Andres Velasquez
    Luna-Flores, Carlos Horacio
    Li, Xu
    Fry, Fiona
    Mutch, George
    Stevens, Geoffrey W.
    Gras, Sally L.
    Speight, Robert E.
    ORGANIC PROCESS RESEARCH & DEVELOPMENT, 2024, 28 (09) : 3614 - 3624
  • [30] De novo biosynthesis and whole-cell catalytic production of paracetamol on a gram scale in Escherichia coli
    Hou, Feifei
    Xian, Mo
    Huang, Wei
    GREEN CHEMISTRY, 2021, 23 (20) : 8280 - 8289