Validity of inertial measurement units for tracking human motion: a systematic review

被引:7
|
作者
Ghattas, John [1 ]
Jarvis, Danielle N. [1 ]
机构
[1] Calif State Univ Northridge, Dept Kinesiol, Northridge, CA 91330 USA
关键词
Accelerometers; biomechanics; three-dimensional analysis; VALIDATION; CAPTURE; GAIT; ORIENTATION; KINEMATICS;
D O I
10.1080/14763141.2021.1990383
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Human motion is often tracked using three-dimensional video motion tracking systems, which have demonstrated high levels of validity. More recently, inertial measurement units (IMUs) have been used to measure human movement due to their ease of access and application. The purpose of this study was to systematically review the literature regarding the validity of inertial sensor systems when being used to track human motion. Four electronic databases were used for the search, and eleven studies were included in the final review. IMUs have a high level of agreement with motion capture systems in the frontal and sagittal planes, measured with root mean square error (RMSE), intraclass correlation coefficient, and Pearson's correlation. However, the transverse or rotational planes began to show large discrepancies in joint angles between systems. Furthermore, as the intensity of the task being measured increased, the RMSE values began to get much larger. Currently, the use of accelerometers and inertial sensor systems has limited application in the assessment of human motion, but if the precision and processing of IMU devices improves further, it could provide researchers an opportunity to collect data in less synthetic environments, as well as improve ease of access to biomechanically analyse human movement.
引用
下载
收藏
页数:14
相关论文
共 50 条
  • [31] Inertial Measurement Units for Clinical Movement Analysis: Reliability and Concurrent Validity
    Al-Amri, Mohammad
    Nicholas, Kevin
    Button, Kate
    Sparkes, Valerie
    Sheeran, Liba
    Davies, Jennifer L.
    SENSORS, 2018, 18 (03):
  • [32] Human and Animal Motion Tracking Using Inertial Sensors
    Marin, Frederic
    SENSORS, 2020, 20 (21) : 1 - 4
  • [33] Particle tracking in snow avalanches with in situ calibrated inertial measurement units
    Winkler, Robert
    Neuhauser, Michael
    Neurauter, Rene
    Erlacher, Felix
    Steinkogler, Walter
    Fischer, Jan-Thomas
    ANNALS OF GLACIOLOGY, 2024,
  • [34] Android platform for realtime gait tracking using inertial measurement units
    Aqueveque, Pablo
    Sobarzo, Sergio
    Saavedra, Francisco
    Maldonado, Claudio
    Gomez, Britam
    EUROPEAN JOURNAL OF TRANSLATIONAL MYOLOGY, 2016, 26 (03) : 262 - 267
  • [35] Feasibility of Bluetooth Low Energy for motion capturing with Inertial Measurement Units
    Veijalainen, Pyry
    Charalambous, Themistoklis
    Wichman, Risto
    JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2023, 213
  • [36] Motion capture with inertial measurement units for hand/arm robot teleoperation
    Kobayashi, Futoshi
    Hasegawa, Ko
    Nakamoto, Hiroyuki
    Kojima, Fumio
    INTERNATIONAL JOURNAL OF APPLIED ELECTROMAGNETICS AND MECHANICS, 2014, 45 (1-4) : 931 - 937
  • [37] Dynamic accuracy of inertial measurement units during simple pendulum motion
    Brodie, M. A.
    Walmsley, A.
    Page, W.
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING, 2008, 11 (03) : 235 - 242
  • [38] Thigh Motion-Based Gait Analysis for Human Identification using Inertial Measurement Units (IMUs)
    Asuncion, Lloyd Vincent R.
    De Mesa, Joan Xyrel P.
    Juan, Patrick Kyle H.
    Sayson, Nathaniel T.
    Dela Cruz, Angelo R.
    2018 IEEE 10TH INTERNATIONAL CONFERENCE ON HUMANOID, NANOTECHNOLOGY, INFORMATION TECHNOLOGY, COMMUNICATION AND CONTROL, ENVIRONMENT AND MANAGEMENT (HNICEM), 2018,
  • [39] Synthetized inertial measurement units (IMUs) to evaluate the placement of wearable sensors on human body for motion recognition
    Hoareau, Damien
    Jodin, Gurvan
    Chantal, Pierre-Antoine
    Bretin, Sara
    Prioux, Jacques
    Razan, Florence
    Journal of Engineering, 2022, 2022 (05): : 536 - 543
  • [40] Synthetized inertial measurement units (IMUs) to evaluate the placement of wearable sensors on human body for motion recognition
    Hoareau, Damien
    Jodin, Gurvan
    Chantal, Pierre-Antoine
    Bretin, Sara
    Prioux, Jacques
    Razan, Florence
    JOURNAL OF ENGINEERING-JOE, 2022, 2022 (05): : 536 - 543