On the sensitivity of the optimal partition for parametric second-order conic optimization

被引:4
|
作者
Mohammad-Nezhad, Ali [1 ]
Terlaky, Tamas [2 ]
机构
[1] Purdue Univ, Dept Math, 150 N Univ St, W Lafayette, IN 47907 USA
[2] Lehigh Univ, Dept Ind & Syst Engn, 200 W Packer Ave, Bethlehem, PA 18015 USA
关键词
Parametric second-order conic optimization; Optimal partition; Nonlinearity interval; Transition point;
D O I
10.1007/s10107-021-01690-7
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, using an optimal partition approach, we study the parametric analysis of a second-order conic optimization problem, where the objective function is perturbed along a fixed direction. We characterize the notions of so-called invariancy set and nonlinearity interval, which serve as stability regions of the optimal partition. We then propose, under the strict complementarity condition, an iterative procedure to compute a nonlinearity interval of the optimal partition. Furthermore, under primal and dual nondegeneracy conditions, we show that a boundary point of a nonlinearity interval can be numerically identified from a nonlinear reformulation of the parametric second-order conic optimization problem. Our theoretical results are supported by numerical experiments.
引用
收藏
页码:491 / 525
页数:35
相关论文
共 50 条
  • [31] Parametric control for a second-order stochastic system
    Iourtchenko, DV
    JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL, 2004, 43 (01) : 79 - 83
  • [32] Parametric control for a second-order stochastic system
    Iourtchenko, D.V.
    Izvestiya Akademii Nauk. Teoriya i Sistemy Upravleniya, 2004, (01): : 84 - 88
  • [33] Second-order optimal sequential tests
    Malyutov, MB
    Tsitovich, II
    OPTIMUM DESIGN 2000, 2001, 51 : 67 - 78
  • [34] Parametric order reduction of proportionally damped second-order systems
    Eid, Rudy
    Salimbahrami, Behnam
    Lohmann, Boris
    Rudnyi, Evgenii B.
    Korvink, Jan G.
    SENSORS AND MATERIALS, 2007, 19 (03) : 149 - 164
  • [35] Second-Order Optimality Conditions for Multiobjective Optimization Whose Order Induced by Second-Order Cone
    Zhang, Li-Wei
    Zhang, Ji-Hong
    Zhang, Yu-Le
    JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF CHINA, 2018, 6 (02) : 267 - 288
  • [36] Implementation of a projection and rescaling algorithm for second-order conic feasibility problems
    Pena, Javier
    Soheili, Negar
    OPTIMIZATION METHODS & SOFTWARE, 2023, 38 (01): : 218 - 241
  • [37] SCORE: A Second-Order Conic Initialization for Range-Aided SLAM
    Papalia, Alan
    Morales, Joseph
    Doherty, Kevin J.
    Rosen, David M.
    Leonard, John J.
    2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2023), 2023, : 10637 - 10644
  • [38] Consistent Second-Order Conic Integer Programming for Learning Bayesian Networks
    Kucukyavuz, Simge
    Shojaie, Ali
    Manzour, Hasan
    Wei, Linchuan
    Wu, Hao-Hsiang
    JOURNAL OF MACHINE LEARNING RESEARCH, 2023, 24
  • [39] Analysis of the Precision of a Second-Order Conic Model to Solve the Optimal Power Dispatch Problem in Electric Power Systems
    Lucas do Carmo Yamaguti
    Juan M. Home-Ortiz
    Mahdi Pourakbari-Kasmaei
    José Roberto Sanches Mantovani
    Journal of Control, Automation and Electrical Systems, 2021, 32 : 1356 - 1364
  • [40] Analysis of the Precision of a Second-Order Conic Model to Solve the Optimal Power Dispatch Problem in Electric Power Systems
    Yamaguti, Lucas do Carmo
    Home-Ortiz, Juan M.
    Pourakbari-Kasmaei, Mahdi
    Sanches Mantovani, Jose Roberto
    JOURNAL OF CONTROL AUTOMATION AND ELECTRICAL SYSTEMS, 2021, 32 (05) : 1356 - 1364